Home
Class 12
MATHS
2tan^(-1){tan.(alpha)/2tan(pi/4-beta/2)}...

`2tan^(-1){tan.(alpha)/2tan(pi/4-beta/2)}" is equal to " alpha,beta,in (0,pi/2)`

A

`tan^(-1)((cosalpha=sinbeta)/(sinalphacosbeta))`

B

`tan^(-1)((sinalphacosbeta)/(cosalpha+sinbeta))`

C

Both (1) & (2)

D

`tan^(-1)((tanalphatanbeta)/(tanalpha+tanbeta))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2\tan^{-1}\left(\frac{\tan(\alpha)}{2\tan\left(\frac{\pi}{4} - \frac{\beta}{2}\right)}\right) = \alpha \), where \( \alpha, \beta \in (0, \frac{\pi}{2}) \), we can follow these steps: ### Step 1: Use the Double Angle Formula for Tangent We know that: \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \] Let \( \theta = \tan^{-1}\left(\frac{\tan(\alpha)}{2\tan\left(\frac{\pi}{4} - \frac{\beta}{2}\right)}\right) \). Then we can rewrite the left-hand side: \[ 2\tan^{-1}(x) = \tan^{-1}\left(\frac{2x}{1 - x^2}\right) \] where \( x = \frac{\tan(\alpha)}{2\tan\left(\frac{\pi}{4} - \frac{\beta}{2}\right)} \). ### Step 2: Substitute for \( x \) Substituting \( x \) into the formula gives: \[ \tan(2\tan^{-1}(x)) = \frac{2\left(\frac{\tan(\alpha)}{2\tan\left(\frac{\pi}{4} - \frac{\beta}{2}\right)}\right)}{1 - \left(\frac{\tan(\alpha)}{2\tan\left(\frac{\pi}{4} - \frac{\beta}{2}\right)}\right)^2} \] ### Step 3: Simplify the Expression This simplifies to: \[ \tan(2\tan^{-1}(x)) = \frac{\tan(\alpha)}{\tan\left(\frac{\pi}{4} - \frac{\beta}{2}\right)} \cdot \frac{1 - \frac{\tan^2(\alpha)}{4\tan^2\left(\frac{\pi}{4} - \frac{\beta}{2}\right)}}{1} \] ### Step 4: Use the Identity for \( \tan\left(\frac{\pi}{4} - \frac{\beta}{2}\right) \) Using the identity: \[ \tan\left(\frac{\pi}{4} - x\right) = \frac{1 - \tan(x)}{1 + \tan(x)} \] we can express \( \tan\left(\frac{\pi}{4} - \frac{\beta}{2}\right) \) in terms of \( \tan\left(\frac{\beta}{2}\right) \). ### Step 5: Set the Equation Equal to \( \tan(\alpha) \) Now we set: \[ \tan(2\tan^{-1}(x)) = \tan(\alpha) \] This leads us to the equation: \[ \frac{\tan(\alpha)}{\tan\left(\frac{\pi}{4} - \frac{\beta}{2}\right)} = \tan(\alpha) \] ### Step 6: Solve for \( \beta \) From this equation, we can isolate \( \beta \) and find its relationship with \( \alpha \). ### Final Result After simplifying and solving, we find: \[ \tan(\beta) = \tan(\alpha) \cdot \tan\left(\frac{\pi}{4} - \frac{\beta}{2}\right) \] This leads us to the conclusion that: \[ \beta = \tan^{-1}\left(\frac{\tan(\alpha)}{1 + \tan(\alpha)}\right) \] Thus, the final answer is: \[ \alpha, \beta \in (0, \frac{\pi}{2}) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - I)(SUBJECTIVE TYPE QUESTION)|6 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

If cos alpha=(2cos beta-1)/(2-cos beta) then tan((alpha)/(2))*cot((beta)/(2)) has the equal to [where alpha,beta in(0,pi)]

Show taht 2tan ^ (- 1) (tan ((alpha) / (2)) tan ((pi) / (4) - (beta) / (2))) = tan ^ (- 1) ((sin alpha cos beta) / (cos alpha + sin beta))

If (sec^(4)alpha)/(sec^(2)beta)-(tan^(4)alpha)/(tan^(2)beta)=1 where alpha,betane(pi)/(2) , then find the value of (sec^(4)beta)/(sec^(2)alpha)-(tan^(4)beta)/(tan^(2)alpha)

If tan(alpha-beta)=(sin2 beta)/(3-cos2 beta), then ( i )tan(alpha)=2tan(beta)( ii) (1)/(2)tan(alpha)=tan(beta)( (ii) 2tan(alpha)=3tan(beta)( iv) 3tan(alpha)=2tan(beta)

If tan^(2)alpha tan^(2)beta+tan^(2)beta tan^(2)gamma+tan^(2)gamma tan^(2)alpha+2tan^(2)alpha tan^(2)beta tan^(2)gamma= 1 .(where alpha,beta,gamma in R-{(n pi)/(2)},n in I ) Value of cos2alpha+cos2 beta+cos2gamma is equal to -

If sin(alpha+beta)=1,sin(alpha-beta)=(1)/(2) where alpha,beta in[0,(pi)/(2)], then tan(alpha+2 beta)tan(2 alpha+beta) is equal to