Home
Class 12
MATHS
cos{cos^(- 1)((-sqrt(3))/2)+pi/6}...

`cos{cos^(- 1)((-sqrt(3))/2)+pi/6}`

Text Solution

Verified by Experts

The correct Answer is:
`-1`

`cos^(-1)(-sqrt(3))/(2))=theta rArr costheta=-sqrt(3)/2 = -cospi/6=cos(pi-pi/6)=cos(5pi)/6 rArr theta=(5pi)/6`.
`therefore` given expression `=cos((5pi)/6+pi/6)=cospi=-1`.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4B|22 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4C|9 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • LINEAR DIFFERENTIAL EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|27 Videos

Similar Questions

Explore conceptually related problems

Find the value of cos [cos^(-1) ((-sqrt3)/2) + pi/6]

sin [(pi) / (6) + cos ^ (- 1) (- (sqrt (3)) / (2))] =

Evaluate cos [(pi)/(6) + cos^(-1) (-(sqrt(3))/(2))]

sin^-1 (cos(sin^-1(sqrt(3)/2))= (A) pi/3 (B) pi/6 (C) - pi/6 (D) none of these

The value of cos^(-1)sqrt((2)/(3))-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A)(pi)/(3)(B)(pi)/(4)(C)(pi)/(2)(D)(pi)/(6)])

The principal value of sin^(-1)((sqrt(3))/(2))+cos^(-1)(cos((pi)/(6))) , is :

the value of cos^(-1)sqrt((2)/(3))-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to:

Prove that cos^(-1) (sqrt(1/3))-cos^(-1) (sqrt((1)/(6)))+cos^(-1) ((sqrt(10)-1)/(3sqrt2))=cos^(-1) (2/3)