Home
Class 12
MATHS
Evaluate sin{pi/2-sin^(-1)(-sqrt(3)/2)}....

Evaluate `sin{pi/2-sin^(-1)(-sqrt(3)/2)}`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \sin\left(\frac{\pi}{2} - \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right) \), we can follow these steps: ### Step 1: Rewrite the expression using properties of inverse trigonometric functions We know that: \[ \sin^{-1}(-x) = -\sin^{-1}(x) \] Thus, we can rewrite \( \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) \) as: \[ -\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) \] So, the expression becomes: \[ \sin\left(\frac{\pi}{2} - \left(-\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)\right)\right) = \sin\left(\frac{\pi}{2} + \sin^{-1}\left(\frac{\sqrt{3}}{2}\right)\right) \] ### Step 2: Find \( \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) \) The value of \( \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) \) corresponds to an angle where the sine is \( \frac{\sqrt{3}}{2} \). This angle is: \[ \frac{\pi}{3} \] Thus, we can substitute this back into our expression: \[ \sin\left(\frac{\pi}{2} + \frac{\pi}{3}\right) \] ### Step 3: Simplify the angle Now, we need to simplify the angle: \[ \frac{\pi}{2} + \frac{\pi}{3} = \frac{3\pi}{6} + \frac{2\pi}{6} = \frac{5\pi}{6} \] So now our expression is: \[ \sin\left(\frac{5\pi}{6}\right) \] ### Step 4: Evaluate \( \sin\left(\frac{5\pi}{6}\right) \) The angle \( \frac{5\pi}{6} \) is in the second quadrant where sine is positive. The sine of \( \frac{5\pi}{6} \) can be calculated as: \[ \sin\left(\frac{5\pi}{6}\right) = \sin\left(\pi - \frac{\pi}{6}\right) = \sin\left(\frac{\pi}{6}\right) \] We know that: \[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] ### Final Answer Thus, the value of the original expression is: \[ \sin\left(\frac{\pi}{2} - \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right) = \frac{1}{2} \]

To evaluate the expression \( \sin\left(\frac{\pi}{2} - \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right) \), we can follow these steps: ### Step 1: Rewrite the expression using properties of inverse trigonometric functions We know that: \[ \sin^{-1}(-x) = -\sin^{-1}(x) \] Thus, we can rewrite \( \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) \) as: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4B|22 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4C|9 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • LINEAR DIFFERENTIAL EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|27 Videos

Similar Questions

Explore conceptually related problems

Find the values of sin{(pi)/(6)-sin^(-1)(-(sqrt(3))/(2))}

Evaluate :sin[(pi)/(3)-sin^(-1)(-(1)/(2))]

Evaluate (i) sin [(pi/3 - sin^(-1)(-1/2)]

The value of sin [ (pi)/(3) - sin^(-1) (- (sqrt(3))/(2))]

Find the value of sin[pi/3 - sin^(-1) (- 1/2)]

For the principal value,evaluate sin^(-1)(-(sqrt(3))/(2))-2sec^(-1)(2(tan pi)/(6))

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/(2))}]

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/(2))}]

The value of sin^(-1)(cot(sin^(-1)((2-sqrt(3))/(4)+(cos^(-1)(sqrt(12)))/(4)+sec^(-1)sqrt(2))))(a)0( b) (pi)/(2)( c) (pi)/(3)( d) none of these