Home
Class 12
MATHS
Prove that i) cos^(-1)(1-2x^(2))=2sin^(...

Prove that
i) `cos^(-1)(1-2x^(2))=2sin^(-1)x`
ii) `cos^(-1)(2x^(2)-1)=2cos^(-1)x`.
iii) `sec^(-1)(1/(2x^(2)-1)=2cos^(-1)x`
iv) `cot^(-1)(sqrt(1-x^(2))-x)=pi/2-1/2cot^(-1)x`.

Text Solution

Verified by Experts

i) Put `x=sintheta`, ii) Put `x=costheta`, iii) Put `x=tantheta`, iv)Putting `x=cottheta`, we get
`cot^(-1)(sqrt(1+x^(2))-x)=cot^(-1)("cosec"theta-cottheta)`
`=cot^(-1)(1-costheta)/(sintheta)=cot^(-1)(2sin^(2)theta/2)/(2sintheta/2costheta/2)`
`=cot^(-1)(tantheta/2)=cot^(-1)[cot(pi/2-theta/2)]`
`=pi/2-theta/2=(pi/2-1/2cot^(-1)x)`.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4D|6 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4B|22 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • LINEAR DIFFERENTIAL EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|27 Videos

Similar Questions

Explore conceptually related problems

Prove that cos^(-1){(1+x)/(2)}=(cos^(-1)x)/(2)

2cos^(-1)x=cos^(-1)(2x^(2)-1)

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

Prove that : cos (2 sin^(-1) x) = 1-2x^2

prove that cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

Prove that: sin{tan^(-1)((1-x^(2))/(2x))+cos^(-1)((1-x^(2))/(1+x^(2)))}=1

Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1)x/(sqrt(1-x^(2))) (iii) "cot"^(-1)(sqrt(1-x^(2)))/x

cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

Prove that cos^(-1)((sqrt(1+x)+sqrt(1-x))/(2))=(pi)/(4)-(1)/(2)cos^(-1)x

Prove that cos [tan^(-1){(sin(cot^(-1)x}] =((x^(2)+1)/(x^(2)+2)) ^(1/2)