Home
Class 12
MATHS
Prove that: i) sin^(-1)(1/sqrt(5))+sin^...

Prove that: i) `sin^(-1)(1/sqrt(5))+sin^(-1)(2/sqrt(5))=pi/2`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4D|6 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Exercise 4B|22 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • LINEAR DIFFERENTIAL EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|27 Videos

Similar Questions

Explore conceptually related problems

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

sin^(-1)((1)/(sqrt(5)))+sin^(-1)((1)/(sqrt(10)))=(pi)/(4)

cot((sin^(-1)1)/(sqrt(5))+(sin^(-4)2)/(sqrt(5)))

sin^(-1)sqrt(x)+sin^(-1)sqrt(1-x)=(pi)/(2)

Prove that : (i) sin(tan^(-1)1) = 1/(sqrt(2))

Prove: tan^(-1)(1/4)+tan^(-1)(2/9)=sin^(-1)(1/(sqrt(5)))

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Prove: sin^(-1)((1)/(sqrt(5)))+cot^(-1)3=(pi)/(4)

Prove that: sin^(-1)((4)/(5))+sin^(-1)((5)/(13))+sin^(-1)((16)/(65))=(pi)/(2)

Prove that: sin15^(@)=(sqrt(3)-1)/(2sqrt(2))