Home
Class 12
MATHS
If A+I={:[(2,2,3),(3,-1,1),(4,2,2)]:} th...

If `A+I={:[(2,2,3),(3,-1,1),(4,2,2)]:}` then show that `A^(3)-23A-40I=0`

Text Solution

Verified by Experts

`A+l={:[(2,2,3),(3,-2,1),(4,2,2)]:}`
`:.A={:[(2,2,3),(3,-2,1),(4,2,2)]:}-{:[(1,0,0),(0,1,0),(0,0,1)]:}={:[(1,2,3),(3,-2,1),(4,2,1)]:}`
Now, `A^(2)=A A={:[(1,2,3),(3,-2,1),(4,2,1)]:}{:[(1,2,3),(3,-2,1),(4,2,1)]:}={:[(19,4,8),(1,12,8),(14,6,16)]:}`
`A^(3)=A^(2)A={:[(1,2,3),(3,-2,1),(4,2,1)]:}{:[(19,4,8),(1,12,8),(14,6,15)]:}={:[(63,46,69),(69,-6,23),(92,46,63)]:}`
Now, `A^(3)-23A-40={:[(63,46,69),(69,-6,23),(92,46,63)]:}-23{:[(1,2,3),(3,-2,1),(4,2,1)]:}-40{:[(1,0,0),(0,1,0),(0,0,1)]:}`
`={:[(63,46,69),(69,-6,23),(92,46,63)]:}+{:[(-23,-46,-69),(-69,46,-23),(-92,-46,-23)]:}+{:[(-40,0,0),(0,-40,0),(0,0,-40)]:}`
`={:[(0,0,0),(0,0,0),(0,0,0)]:}=0`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE|Exercise Example 15|1 Videos
  • MATRICES

    AAKASH INSTITUTE|Exercise Example 16|1 Videos
  • MATRICES

    AAKASH INSTITUTE|Exercise Example 13|1 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

If A=[[1,2,33,-2,14,2,1]], then show that A^(3)-23A-401=0

If A=|{:(1,2,2),(2,1,2),(2,2,1):}| , then show that A^(2)-4A-5I_(3)=0 . Hemce find A^(-1) .

if A=[[1,2,33,2,14,-2,1]] then prove that A^(3)-23A-40I=0

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

(i) if A=[{:(4,-1,-4),(3,0,-4),(3,-1,-3):}], then show that A^(2)=I

If A=[[1,-3,22,0,-11,2,3]], then show that AA^(3)-4A^(2)-3A+11I=0 where O and I are null and identity matrix of order 3 respectively.

If A=([4,-35,2]), then show that A+23A^(-1)=6I

if A=[{:(3,1),(-1,2):}], show that A^(2)-5A+7I=0.

(i) if A=[{:(1,-1),(2,3):}], then show that A^(2)-4A+5I=O. (ii) if f(x)=x^(2)+3x-5and A=[{:(2,-1),(4,3):}], then find f(A).

If A=[[3,1-1,2]], show that A^(2)-5A+7I=0