Home
Class 12
MATHS
Let Delta=|{:(3,-1,-2),(4,5,6),(2,-3,1):...

Let `Delta=|{:(3,-1,-2),(4,5,6),(2,-3,1):}|` Find minor and cofactor of elements of `Delta`.

Text Solution

Verified by Experts

`{:(M_11=23,|,M_231=-7,|,M_31=4),(M_12=-8,|,M_22=78,|,M_32=26),(M_13=-22,|,M_23=7,|,M_33=19):}`
`{:(A_11=23,|,A_21=7,|,M_31=4),(A_12=8,|,A_22=7,|,A_32=26),(A_13-22,|,A_23=-7,A_33=19,):}`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION A|33 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - B|21 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - J|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Find minors and cofactors of all the elements of the determinant det[[1,-24,3]]

Find minors and cofactors of all the elements of the determinant abs([2,1],[-5,-3])

If Delta = |(5,3,8),(6,0,4),(1,2,3)| then the minor of the element a_(21) is

If Delta=|{:(1,2,3),(2,0,1),(5,3,8):}| , then minor of a_(22) =__________

If Delta=|{:(5,3,8),(2,0,1),(1,2,3):}| , write : (i) the minor of the element a_(23) (ii) the co-factor of the element a_(32) .

Evaluate Delta = |{:(3, 4, 5), (-6, 2, -3), (8, 1, 7):}|

In the determinant, Delta = |[-2, 5, -1], [4, 7, 0], [5, -3, 1]|, the sum of the minors of elements of third row is

Let Delta=|(1,-4,20),(1,-2,5),(1,2,5x^(2))| Solution set of Delta=0 is

Let Delta_0 = |(a_11, a_12, a_13), (a_21, a_22, a_23), (a_31, a_32, a_33)|, (where Delta_0 !=0) and let Delta_1 denote the determinant formed by the cofactors of elements of Delta_0 and Delta_2 denote the determinant formed by the cofactors at Delta_1 and so on Delta_n denotes the determinant formed by the cofactors at Delta_(n-1) then the determinant value of Delta_n is (A) (Delta_0)^(2n) (B) (Delta_0)^(2^n) (C) (Delta_0)^2 (D) (Delta_0)^(n^2)