Home
Class 12
MATHS
Let ax^3+bx^2+cx+d=|{:(3x,x+1,x-1),(x-3,...

Let `ax^3+bx^2+cx+d=|{:(3x,x+1,x-1),(x-3,-2x,x+2),(x+3,x-4,5x):}|` then the value of d is

A

5

B

0

C

-6

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( d \) from the determinant expression given. The expression is: \[ ax^3 + bx^2 + cx + d = \left| \begin{array}{ccc} 3x & x+1 & x-1 \\ x-3 & -2x & x+2 \\ x+3 & x-4 & 5x \end{array} \right| \] ### Step 1: Calculate the Determinant We will calculate the determinant of the 3x3 matrix. The determinant can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: \[ A = \begin{bmatrix} 3x & x+1 & x-1 \\ x-3 & -2x & x+2 \\ x+3 & x-4 & 5x \end{bmatrix} \] Using the determinant formula, we will expand it. ### Step 2: Expand the Determinant Calculating the determinant step by step: \[ \text{det}(A) = 3x \left| \begin{array}{cc} -2x & x+2 \\ x-4 & 5x \end{array} \right| - (x+1) \left| \begin{array}{cc} x-3 & x+2 \\ x+3 & 5x \end{array} \right| + (x-1) \left| \begin{array}{cc} x-3 & -2x \\ x+3 & x-4 \end{array} \right| \] Calculating the first determinant: \[ \left| \begin{array}{cc} -2x & x+2 \\ x-4 & 5x \end{array} \right| = (-2x)(5x) - (x+2)(x-4) = -10x^2 - (x^2 - 2x - 8) = -10x^2 - x^2 + 2x + 8 = -11x^2 + 2x + 8 \] Calculating the second determinant: \[ \left| \begin{array}{cc} x-3 & x+2 \\ x+3 & 5x \end{array} \right| = (x-3)(5x) - (x+2)(x+3) = 5x^2 - 15x - (x^2 + 5x + 6) = 5x^2 - 15x - x^2 - 5x - 6 = 4x^2 - 20x - 6 \] Calculating the third determinant: \[ \left| \begin{array}{cc} x-3 & -2x \\ x+3 & x-4 \end{array} \right| = (x-3)(x-4) - (-2x)(x+3) = (x^2 - 7x + 12) + 2x^2 + 6x = 3x^2 - x + 12 \] ### Step 3: Substitute Back into the Determinant Expression Now substituting back into the determinant expression: \[ \text{det}(A) = 3x(-11x^2 + 2x + 8) - (x+1)(4x^2 - 20x - 6) + (x-1)(3x^2 - x + 12) \] Expanding this will give us a polynomial in \( x \). ### Step 4: Collect Like Terms After expanding and collecting like terms, we will have a polynomial of the form: \[ ax^3 + bx^2 + cx + d \] ### Step 5: Identify the Constant Term \( d \) The constant term \( d \) can be directly obtained from the polynomial after simplification. ### Final Result After performing the calculations, we find that the value of \( d \) is: \[ \boxed{-4} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - B|21 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise Try Yourself|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Let ax^3+bx^2+cx+d=|(x+1,2x,3x),(2x+3,x+1,x),(2-x,3x+4,5x-1)| then what is the value of c

Let ax^3+bx^2+cx+d =|(x+1,2x,3x),(2x+3,x+1,x), (2-x,3x+4,5x-1)| then what is the value of c

Let ax^(3) + bx^(2) + cx + d |(x+1,2x,3x),(2x+3,x+1,x),(2-x,3x+4,5x-1)| , then What is the value of a + b + c + d ?

Let ax^(3) + bx^(2) + cx + d |(x+1,2x,3x),(2x+3,x+1,x),(2-x,3x+4,5x-1)| , then What is the value of c ?

If ax^4+bx^3+cx^2+dx+e=|[2x,x-1,x+1] , [x+1, x^2-x,x-1] , [x-1,x+1,3x]| then the value of c is

Given that (5x - 3)^3 + (2x + 5)^3 + 27(4- 3x)^3 = 9(3 - 5x)(2x + 5)(3x - 4) , then the value of (2x + 1) is:

AAKASH INSTITUTE-DETERMINANTS -SECTION A
  1. If delta =|(a1,b1,c1),(a2,b2,c2),(a3,b3,c3)| then the value of |(2a1+3...

    Text Solution

    |

  2. If the system of equations x + 4ay + az = 0 and x + 3by + bz = 0 and x...

    Text Solution

    |

  3. Let ax^3+bx^2+cx+d=|{:(3x,x+1,x-1),(x-3,-2x,x+2),(x+3,x-4,5x):}| then ...

    Text Solution

    |

  4. Let x + y + z = 6, 4x + lambday - lambdaz = 0,3x + 2y - 4z = -5. The v...

    Text Solution

    |

  5. If A+B+C=pi, then value of |{:(sin(A+B+C),sinB,cosC),(-sinB,0,tanA),(c...

    Text Solution

    |

  6. The value of theta lying between 0 and pi/2 and satisfying the equatio...

    Text Solution

    |

  7. |[x,-6,-1],[2,-3x,x-3],[-3,2x,x+2]|=0

    Text Solution

    |

  8. If |{:(4,-4,0),(a,b+4,c),(a,b,c+4):}|=0, then a+b+c is equal to

    Text Solution

    |

  9. The equation |{:(x-2,3,1),(4x-2,10,4),(2x-1,5,1):}|=0 is satisfied by

    Text Solution

    |

  10. |{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is eqaual to

    Text Solution

    |

  11. |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

    Text Solution

    |

  12. The roots of the equation |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 are

    Text Solution

    |

  13. The value of the determinant |{:(1,logba),(logab,1):}| is equal to

    Text Solution

    |

  14. |{:(1+a,c,1+bc),(1+a,b,1+bc),(1+a,e,1+bc):}| is equal to

    Text Solution

    |

  15. if [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=lambda a^2b^2c^2 then find...

    Text Solution

    |

  16. If f(x) =|(1,x,(x+1)),(2x,x(x-1),(x+1)x),(3x(x-1), x(x-1)(x-2),x(x-1)(...

    Text Solution

    |

  17. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  18. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  19. If s=(a+b+c),then value of |{:(s+c,a,b),(c,s+a,b),(c,a,s+b):}|is

    Text Solution

    |

  20. The number of distinct real roots of |s in x cos x cos x cos x s in x ...

    Text Solution

    |