Home
Class 12
MATHS
If A+B+C=pi, then value of |{:(sin(A+B+C...

If `A+B+C=pi`, then value of `|{:(sin(A+B+C),sinB,cosC),(-sinB,0,tanA),(cos(A+B),-tanA,0):}|` is

A

0

B

1

C

`2sinB * tanAcosC`

D

`2sinAsinBsinC`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant given the condition \( A + B + C = \pi \), we will evaluate the determinant step by step. ### Step 1: Write the Determinant We start with the determinant: \[ D = \begin{vmatrix} \sin(A+B+C) & \sin B & \cos C \\ -\sin B & 0 & \tan A \\ \cos(A+B) & -\tan A & 0 \end{vmatrix} \] ### Step 2: Substitute \( A + B + C \) Since \( A + B + C = \pi \), we can substitute this into the determinant: \[ \sin(A+B+C) = \sin(\pi) = 0 \] Thus, the determinant becomes: \[ D = \begin{vmatrix} 0 & \sin B & \cos C \\ -\sin B & 0 & \tan A \\ \cos(A+B) & -\tan A & 0 \end{vmatrix} \] ### Step 3: Expand the Determinant We can expand the determinant along the first row: \[ D = 0 \cdot \begin{vmatrix} 0 & \tan A \\ -\tan A & 0 \end{vmatrix} - \sin B \cdot \begin{vmatrix} -\sin B & \tan A \\ \cos(A+B) & 0 \end{vmatrix} + \cos C \cdot \begin{vmatrix} -\sin B & 0 \\ \cos(A+B) & -\tan A \end{vmatrix} \] Since the first term is multiplied by 0, we focus on the other two terms. ### Step 4: Calculate the Remaining Determinants 1. For the second term: \[ \begin{vmatrix} -\sin B & \tan A \\ \cos(A+B) & 0 \end{vmatrix} = (-\sin B)(0) - (\tan A)(\cos(A+B)) = -\tan A \cos(A+B) \] 2. For the third term: \[ \begin{vmatrix} -\sin B & 0 \\ \cos(A+B) & -\tan A \end{vmatrix} = (-\sin B)(-\tan A) - (0)(\cos(A+B)) = \sin B \tan A \] ### Step 5: Substitute Back into the Determinant Now substituting back: \[ D = -\sin B (-\tan A \cos(A+B)) + \cos C (\sin B \tan A) \] This simplifies to: \[ D = \sin B \tan A \cos(A+B) + \cos C \sin B \tan A \] Factoring out \(\sin B \tan A\): \[ D = \sin B \tan A (\cos(A+B) + \cos C) \] ### Step 6: Use the Identity for \(\cos(A+B)\) Using the identity \(\cos(A+B) = -\cos C\) (since \(A + B + C = \pi\)): \[ D = \sin B \tan A (-\cos C + \cos C) = \sin B \tan A \cdot 0 = 0 \] ### Conclusion Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - B|21 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise Try Yourself|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If A+B+C=pi, then the value of |[sin(A+B+C),sin(A+C),cosC],[-sinB,0,tanC],[cos(A+B),tan(B+C),0]|is equal to (a)0 (b) 1 (c) 2sinBtanAcosC (d) none of these

If A + B+C = pi, then the value of |(cos(A+b+C),cos B,cos C),(-sin B,0,cot A),(sin(A+B),-cot A,0)| is

If A ,B and C are the angles of an equilateral triangle, then the value of |{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB+sin^2B,sinC+sin^2C):}| is ...........

If sinA+sinB=C,cosA+cosB=D , then the value of sin(A+B) =

The value of (sin A+sinB)/(cos A+cos B)+(cos A-cosB)/(sinA-sinB) is……

If A+B+C=pi then cos(A+B)+cosC=

Prove that: (cos(A-B)+sinA-cos(A+B))/(sin(A+B)+cosA-sin(A-B))=tanA

AAKASH INSTITUTE-DETERMINANTS -SECTION A
  1. Let ax^3+bx^2+cx+d=|{:(3x,x+1,x-1),(x-3,-2x,x+2),(x+3,x-4,5x):}| then ...

    Text Solution

    |

  2. Let x + y + z = 6, 4x + lambday - lambdaz = 0,3x + 2y - 4z = -5. The v...

    Text Solution

    |

  3. If A+B+C=pi, then value of |{:(sin(A+B+C),sinB,cosC),(-sinB,0,tanA),(c...

    Text Solution

    |

  4. The value of theta lying between 0 and pi/2 and satisfying the equatio...

    Text Solution

    |

  5. |[x,-6,-1],[2,-3x,x-3],[-3,2x,x+2]|=0

    Text Solution

    |

  6. If |{:(4,-4,0),(a,b+4,c),(a,b,c+4):}|=0, then a+b+c is equal to

    Text Solution

    |

  7. The equation |{:(x-2,3,1),(4x-2,10,4),(2x-1,5,1):}|=0 is satisfied by

    Text Solution

    |

  8. |{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is eqaual to

    Text Solution

    |

  9. |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

    Text Solution

    |

  10. The roots of the equation |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 are

    Text Solution

    |

  11. The value of the determinant |{:(1,logba),(logab,1):}| is equal to

    Text Solution

    |

  12. |{:(1+a,c,1+bc),(1+a,b,1+bc),(1+a,e,1+bc):}| is equal to

    Text Solution

    |

  13. if [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=lambda a^2b^2c^2 then find...

    Text Solution

    |

  14. If f(x) =|(1,x,(x+1)),(2x,x(x-1),(x+1)x),(3x(x-1), x(x-1)(x-2),x(x-1)(...

    Text Solution

    |

  15. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  16. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  17. If s=(a+b+c),then value of |{:(s+c,a,b),(c,s+a,b),(c,a,s+b):}|is

    Text Solution

    |

  18. The number of distinct real roots of |s in x cos x cos x cos x s in x ...

    Text Solution

    |

  19. If a, b,c> 0 and x,y,z in R then the determinant: |((a^x+a^-x)^2,(a...

    Text Solution

    |

  20. The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sina...

    Text Solution

    |