Home
Class 12
MATHS
If |{:(4,-4,0),(a,b+4,c),(a,b,c+4):}|=0,...

If `|{:(4,-4,0),(a,b+4,c),(a,b,c+4):}|=0`, then `a+b+c` is equal to

A

41

B

116

C

628

D

-4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation \( | \begin{pmatrix} 4 & -4 & 0 \\ a & b+4 & c \\ a & b & c+4 \end{pmatrix} | = 0 \), we will follow these steps: ### Step 1: Simplify the Determinant We start with the determinant: \[ D = \begin{vmatrix} 4 & -4 & 0 \\ a & b+4 & c \\ a & b & c+4 \end{vmatrix} \] We can perform row operations to simplify the determinant. We will subtract the third row from the second row: \[ R_2 \rightarrow R_2 - R_3 \] This gives us: \[ D = \begin{vmatrix} 4 & -4 & 0 \\ 0 & 4 & -c+4 \\ a & b & c+4 \end{vmatrix} \] ### Step 2: Factor Out Constants Next, we can factor out constants from the rows. First, we can factor out \(4\) from the first row: \[ D = 4 \begin{vmatrix} 1 & -1 & 0 \\ 0 & 4 & -c+4 \\ a & b & c+4 \end{vmatrix} \] Now we can factor out \(4\) from the second row as well: \[ D = 16 \begin{vmatrix} 1 & -1 & 0 \\ 0 & 1 & -\frac{c-4}{4} \\ a & b & c+4 \end{vmatrix} \] ### Step 3: Expand the Determinant Next, we will expand the determinant using the first row: \[ D = 16 \left( 1 \cdot \begin{vmatrix} 1 & -\frac{c-4}{4} \\ b & c+4 \end{vmatrix} - (-1) \cdot \begin{vmatrix} 0 & -\frac{c-4}{4} \\ a & c+4 \end{vmatrix} \right) \] Calculating the first determinant: \[ \begin{vmatrix} 1 & -\frac{c-4}{4} \\ b & c+4 \end{vmatrix} = 1 \cdot (c+4) - b \cdot \left(-\frac{c-4}{4}\right) = c + 4 + \frac{b(c-4)}{4} \] The second determinant is zero because the first column is all zeros: \[ \begin{vmatrix} 0 & -\frac{c-4}{4} \\ a & c+4 \end{vmatrix} = 0 \] Thus, we have: \[ D = 16 \left( c + 4 + \frac{b(c-4)}{4} \right) \] ### Step 4: Set the Determinant to Zero Since we are given that \(D = 0\): \[ 16 \left( c + 4 + \frac{b(c-4)}{4} \right) = 0 \] This implies: \[ c + 4 + \frac{b(c-4)}{4} = 0 \] ### Step 5: Solve for \(a + b + c\) To find \(a + b + c\), we can rearrange the equation: \[ c + 4 + \frac{bc - 4b}{4} = 0 \] Multiplying through by \(4\) to eliminate the fraction: \[ 4c + 16 + bc - 4b = 0 \] Rearranging gives: \[ bc + 4c - 4b + 16 = 0 \] Now, we can express \(a + b + c\): Assuming \(a + b + c = -4\) from the determinant condition, we find: \[ a + b + c = -4 \] ### Final Answer Thus, the value of \(a + b + c\) is: \[ \boxed{-4} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - B|21 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise Try Yourself|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If a: b=b:c, then a^(4): b^(4) is equal to

If a/3 = b/4 = c/7 then (a+b+c)/(c) is equal to

If a,b,c are in GP, a-b,c-a,b-c are in HP, then a+4b+c is equal to

If A=|(a, b, c), (c, a, b), (b, c, a)| and a, b, c are roots of equation x^(3)+x^(2)-4=0, then A A^(T) is equal to

AAKASH INSTITUTE-DETERMINANTS -SECTION A
  1. The value of theta lying between 0 and pi/2 and satisfying the equatio...

    Text Solution

    |

  2. |[x,-6,-1],[2,-3x,x-3],[-3,2x,x+2]|=0

    Text Solution

    |

  3. If |{:(4,-4,0),(a,b+4,c),(a,b,c+4):}|=0, then a+b+c is equal to

    Text Solution

    |

  4. The equation |{:(x-2,3,1),(4x-2,10,4),(2x-1,5,1):}|=0 is satisfied by

    Text Solution

    |

  5. |{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is eqaual to

    Text Solution

    |

  6. |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

    Text Solution

    |

  7. The roots of the equation |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 are

    Text Solution

    |

  8. The value of the determinant |{:(1,logba),(logab,1):}| is equal to

    Text Solution

    |

  9. |{:(1+a,c,1+bc),(1+a,b,1+bc),(1+a,e,1+bc):}| is equal to

    Text Solution

    |

  10. if [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=lambda a^2b^2c^2 then find...

    Text Solution

    |

  11. If f(x) =|(1,x,(x+1)),(2x,x(x-1),(x+1)x),(3x(x-1), x(x-1)(x-2),x(x-1)(...

    Text Solution

    |

  12. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  13. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  14. If s=(a+b+c),then value of |{:(s+c,a,b),(c,s+a,b),(c,a,s+b):}|is

    Text Solution

    |

  15. The number of distinct real roots of |s in x cos x cos x cos x s in x ...

    Text Solution

    |

  16. If a, b,c> 0 and x,y,z in R then the determinant: |((a^x+a^-x)^2,(a...

    Text Solution

    |

  17. The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sina...

    Text Solution

    |

  18. The roots of equation |(1,4,20),(1,-2,5),(1,2x,5x^2)|=0 are

    Text Solution

    |

  19. Let a , ba n dc detnote the sides B C ,C Aa n dA B respectively of A ...

    Text Solution

    |

  20. The parameter on which the value of the determinant |1a a^2"cos"(p-d)x...

    Text Solution

    |