Home
Class 12
MATHS
If a, b,c> 0 and x,y,z in R then the de...

If `a, b,c> 0` and `x,y,z in R` then the determinant: `|((a^x+a^-x)^2,(a^x-a^-x)^2,1),((b^y+b^-y)^2,(b^y-b^-y)^2,1),((c^z+c^-z)^2,(c^z-c^-z)^2,1)|` is equal to

A

0

B

`2abc`

C

`a^2b^2c^2`

D

`abc`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - B|21 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise Try Yourself|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If a,b,c>0 and x,y,z in R then |[(a^x+a^(-x))^2, (a^x-a^(-x))^2, 1] , [(b^y+b^(-y))^2, (b^y-b^(-y))^2, 1], [(c^z+c^(-z))^2, (c^z-c^(-z))^2, 1]|=

Prove that the value of each the following determinants is zero: (a^(x)+a^(-x))^(2),(a^(x)-a^(-x))^(2),1(b^(y)+b^(-y))^(2),(b^(y)-+b^(-y))^(2),1(c^(z)+c^(-z))^(2),(c^(z)-c^(-z))^(2),1]|

If a, b, c > 0 and x, y, z E R, then the determinant (a +a*)2 (a -ax)2 1 (b + b-y)2 (b b-y)2 1 (c2 + c2)2 (c+c2)2 1 x12 al roots of = 0, is is dependent on a. a, b, c only c. a, b, c, x, y, z b. x, y, z only d. None of these (-9: Let x < 1? then value of x2 +2 2x +1 1

Without expanding, show that "Delta"=|(a-x)^2(a-y)^2(a-z)^2(b-x)^2(b-y)^2(b-z)^2(c-x)^2(c-y)^2(c-z)^2|=2(a-b)(b-c)(c-a)(x-y)(y-z)(z-x)

If a ,b ,c ,d ,e, and fare in G.P. then the value of |((a^2),(d^2),x),((b^2),(e^2),y),((c^2),(f^2),z)| depends on (A) x and y (B) x and z (C) y and z (D) independent of x ,y ,and z

If 2b = a + c and y^(2) = xz , then what is x^(b-c) y^(c-a)z^(a-b) equal to ?

If x+a=y+b+1=z+c then the value of [[x, (a+y), (a+x)], [y, (b+y), (b+y)], [z, (c+y), (c+z)]] is

If a + x = b + y = c + z + 1 , where a, b,c,x,y,z are non polar distinct real numbers , then |(x, a+y,x + a),(y , b+y , y + b),(z,c+y, z+c)| is equal to :

AAKASH INSTITUTE-DETERMINANTS -SECTION A
  1. The value of theta lying between 0 and pi/2 and satisfying the equatio...

    Text Solution

    |

  2. |[x,-6,-1],[2,-3x,x-3],[-3,2x,x+2]|=0

    Text Solution

    |

  3. If |{:(4,-4,0),(a,b+4,c),(a,b,c+4):}|=0, then a+b+c is equal to

    Text Solution

    |

  4. The equation |{:(x-2,3,1),(4x-2,10,4),(2x-1,5,1):}|=0 is satisfied by

    Text Solution

    |

  5. |{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is eqaual to

    Text Solution

    |

  6. |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

    Text Solution

    |

  7. The roots of the equation |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 are

    Text Solution

    |

  8. The value of the determinant |{:(1,logba),(logab,1):}| is equal to

    Text Solution

    |

  9. |{:(1+a,c,1+bc),(1+a,b,1+bc),(1+a,e,1+bc):}| is equal to

    Text Solution

    |

  10. if [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=lambda a^2b^2c^2 then find...

    Text Solution

    |

  11. If f(x) =|(1,x,(x+1)),(2x,x(x-1),(x+1)x),(3x(x-1), x(x-1)(x-2),x(x-1)(...

    Text Solution

    |

  12. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  13. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  14. If s=(a+b+c),then value of |{:(s+c,a,b),(c,s+a,b),(c,a,s+b):}|is

    Text Solution

    |

  15. The number of distinct real roots of |s in x cos x cos x cos x s in x ...

    Text Solution

    |

  16. If a, b,c> 0 and x,y,z in R then the determinant: |((a^x+a^-x)^2,(a...

    Text Solution

    |

  17. The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sina...

    Text Solution

    |

  18. The roots of equation |(1,4,20),(1,-2,5),(1,2x,5x^2)|=0 are

    Text Solution

    |

  19. Let a , ba n dc detnote the sides B C ,C Aa n dA B respectively of A ...

    Text Solution

    |

  20. The parameter on which the value of the determinant |1a a^2"cos"(p-d)x...

    Text Solution

    |