Home
Class 12
MATHS
The determinant D=|{:(cos(alpha+beta),-s...

The determinant `D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sinalpha,cosalpha,sinbeta),(-cosalpha,sinalpha,cosbeta):}|` is independent of :-

A

`alpha`

B

`beta`

C

`alpha" and "beta`

D

Neihter `alpha"nor"beta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( D = \begin{vmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) & \cos(2\beta) \\ \sin \alpha & \cos \alpha & \sin \beta \\ -\cos \alpha & \sin \alpha & \cos \beta \end{vmatrix} \) and determine what it is independent of, we will follow these steps: ### Step 1: Expand the Determinant We will expand the determinant along the first row (R1). The formula for the determinant of a 3x3 matrix is given by: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \( a, b, c \) are the elements of the first row, and \( d, e, f, g, h, i \) are the elements of the second and third rows. For our determinant: - \( a = \cos(\alpha + \beta) \) - \( b = -\sin(\alpha + \beta) \) - \( c = \cos(2\beta) \) The remaining elements are: - \( d = \sin \alpha \) - \( e = \cos \alpha \) - \( f = \sin \beta \) - \( g = -\cos \alpha \) - \( h = \sin \alpha \) - \( i = \cos \beta \) ### Step 2: Calculate Each Component 1. **First Component**: \[ D_1 = \cos(\alpha + \beta) \left( \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \right) = \cos(\alpha + \beta) \cdot \cos(\alpha + \beta) = \cos^2(\alpha + \beta) \] 2. **Second Component**: \[ D_2 = -(-\sin(\alpha + \beta)) \left( \sin \alpha \cdot \cos \beta - \sin \beta \cdot (-\cos \alpha) \right) = \sin(\alpha + \beta) \left( \sin \alpha \cdot \cos \beta + \sin \beta \cdot \cos \alpha \right) = \sin(\alpha + \beta) \cdot \sin(\alpha + \beta) = \sin^2(\alpha + \beta) \] 3. **Third Component**: \[ D_3 = \cos(2\beta) \left( \sin \alpha \cdot \sin \alpha - \cos \alpha \cdot (-\cos \alpha) \right) = \cos(2\beta) \left( \sin^2 \alpha + \cos^2 \alpha \right) = \cos(2\beta) \cdot 1 = \cos(2\beta) \] ### Step 3: Combine the Components Putting it all together, we have: \[ D = \cos^2(\alpha + \beta) + \sin^2(\alpha + \beta) + \cos(2\beta) \] Using the identity \( \cos^2 x + \sin^2 x = 1 \): \[ D = 1 + \cos(2\beta) \] ### Step 4: Analyze Independence The expression \( D = 1 + \cos(2\beta) \) shows that \( D \) depends only on \( \beta \) and is independent of \( \alpha \). ### Final Answer Thus, the determinant \( D \) is independent of \( \alpha \). ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - B|21 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE|Exercise Try Yourself|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

The value of the determinant Delta = |(cos (alpha + beta),- sin (alpha + beta),cos 2 beta),(sin alpha,cos alpha,sin beta),(- cos alpha,sin alpha,- cos beta)| , is

The maximum value of determinant |{:(cos(alpha+beta),sin alpha,-cos alpha),(-sin(alpha+beta),cos alpha, sin alpha),(cos 2beta,sin beta, cos beta):}| is ___________

If A=[(0,sin alpha, sinalpha sinbeta),(-sinalpha, 0, cosalpha cosbeta),(-sinalpha sinbeta, -cosalphacosbeta, 0)] then (A) |A| is independent of alpha and beta (B) A^-1 depends only on beta (C) A^-1 does not exist (D) none of these

(sinalpha cos beta+cos alpha sin beta)^2+(cos alpha cos beta-sin alpha sin beta)^2=1

If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then

The value of the determinant |{:(1,sin(alpha-beta)theta,cos (alpha-beta)theta),(a, sinalphatheta,cos alphatheta),(a^(2),sin(alpha-beta)theta,cos(alpha-beta)theta):}| is independent of

Ecaluate [{:(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,cosbeta,0),(sinalphacosbeta,sinalphasinbeta,cosalpha):}]

AAKASH INSTITUTE-DETERMINANTS -SECTION A
  1. The value of theta lying between 0 and pi/2 and satisfying the equatio...

    Text Solution

    |

  2. |[x,-6,-1],[2,-3x,x-3],[-3,2x,x+2]|=0

    Text Solution

    |

  3. If |{:(4,-4,0),(a,b+4,c),(a,b,c+4):}|=0, then a+b+c is equal to

    Text Solution

    |

  4. The equation |{:(x-2,3,1),(4x-2,10,4),(2x-1,5,1):}|=0 is satisfied by

    Text Solution

    |

  5. |{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is eqaual to

    Text Solution

    |

  6. |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

    Text Solution

    |

  7. The roots of the equation |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 are

    Text Solution

    |

  8. The value of the determinant |{:(1,logba),(logab,1):}| is equal to

    Text Solution

    |

  9. |{:(1+a,c,1+bc),(1+a,b,1+bc),(1+a,e,1+bc):}| is equal to

    Text Solution

    |

  10. if [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=lambda a^2b^2c^2 then find...

    Text Solution

    |

  11. If f(x) =|(1,x,(x+1)),(2x,x(x-1),(x+1)x),(3x(x-1), x(x-1)(x-2),x(x-1)(...

    Text Solution

    |

  12. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  13. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  14. If s=(a+b+c),then value of |{:(s+c,a,b),(c,s+a,b),(c,a,s+b):}|is

    Text Solution

    |

  15. The number of distinct real roots of |s in x cos x cos x cos x s in x ...

    Text Solution

    |

  16. If a, b,c> 0 and x,y,z in R then the determinant: |((a^x+a^-x)^2,(a...

    Text Solution

    |

  17. The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sina...

    Text Solution

    |

  18. The roots of equation |(1,4,20),(1,-2,5),(1,2x,5x^2)|=0 are

    Text Solution

    |

  19. Let a , ba n dc detnote the sides B C ,C Aa n dA B respectively of A ...

    Text Solution

    |

  20. The parameter on which the value of the determinant |1a a^2"cos"(p-d)x...

    Text Solution

    |