Home
Class 12
MATHS
If Y = (1 + tan x)/(1 - tan x), then (dy...

If `Y = (1 + tan x)/(1 - tan x)`, then `(dy)/(dx)` is

A

`(2 sec^(2)x)/((1- tan x)^(2))`

B

`(2 sec^(2) x)/(1 + tan x)`

C

`("sin"^(2) x)/(1 + tan x)`

D

`(sec^(2) x)/(1 + tan x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the function \( Y = \frac{1 + \tan x}{1 - \tan x} \), we will use the quotient rule. The quotient rule states that if you have a function \( Y = \frac{u}{v} \), then the derivative is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( u = 1 + \tan x \) and \( v = 1 - \tan x \). ### Step 1: Identify \( u \) and \( v \) Let: - \( u = 1 + \tan x \) - \( v = 1 - \tan x \) ### Step 2: Find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \) Now, we need to find the derivatives of \( u \) and \( v \): 1. **For \( u \)**: \[ \frac{du}{dx} = \frac{d}{dx}(1 + \tan x) = 0 + \sec^2 x = \sec^2 x \] 2. **For \( v \)**: \[ \frac{dv}{dx} = \frac{d}{dx}(1 - \tan x) = 0 - \sec^2 x = -\sec^2 x \] ### Step 3: Apply the Quotient Rule Now we can apply the quotient rule: \[ \frac{dy}{dx} = \frac{(1 - \tan x)(\sec^2 x) - (1 + \tan x)(-\sec^2 x)}{(1 - \tan x)^2} \] ### Step 4: Simplify the Expression Now, simplify the numerator: \[ \frac{dy}{dx} = \frac{(1 - \tan x)\sec^2 x + (1 + \tan x)\sec^2 x}{(1 - \tan x)^2} \] Combine the terms in the numerator: \[ = \frac{\sec^2 x (1 - \tan x + 1 + \tan x)}{(1 - \tan x)^2} \] This simplifies to: \[ = \frac{\sec^2 x (2)}{(1 - \tan x)^2} \] Thus, we have: \[ \frac{dy}{dx} = \frac{2 \sec^2 x}{(1 - \tan x)^2} \] ### Final Answer \[ \frac{dy}{dx} = \frac{2 \sec^2 x}{(1 - \tan x)^2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - C|6 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Try yourself|64 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

If y = sqrt((1 + tan x)/(1 - tan x)) " then " (dy)/(dx)= ?

If y=sqrt((1+tan x)/(1-tan x)) then (dy)/(dx)= is equal to

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

If y=tan^(-1)x ,then (dy)/(dx) is

If y=x^(tan x)+(tan x)^(x) , then find (dy)/(dx)

y=[(1-tan x)/(1+tan x)], then the value of (dy)/(dx)

If y= sqrt ((1-tan 2x ) /( 1+tan 2x )) ,then (dy)/(dx) =

If y =cot ^(-1) ((3+4tan x )/( 4-3tan x) ) ,then (dy)/(dx)=

If y=x^(tan ^(-1)x) ,then (dy)/(dx)=