Home
Class 12
MATHS
If Y = ((2 - 3 cos x)/("sin" x)), then (...

If `Y = ((2 - 3 cos x)/("sin" x))`, then `(dy)/(dx)` at `x = (pi)/(4)` is

A

`2 (3 - sqrt(2)`

B

`2 - 3 sqrt(2)`

C

`3 sqrt(2) + 1`

D

`6 - sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(x = \frac{\pi}{4}\) for the function \(Y = \frac{2 - 3 \cos x}{\sin x}\), we will use the quotient rule for differentiation. ### Step-by-Step Solution: 1. **Identify the function**: \[ Y = \frac{2 - 3 \cos x}{\sin x} \] 2. **Apply the Quotient Rule**: The quotient rule states that if \(Y = \frac{u}{v}\), then: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Here, \(u = 2 - 3 \cos x\) and \(v = \sin x\). 3. **Differentiate \(u\) and \(v\)**: - Differentiate \(u\): \[ \frac{du}{dx} = 0 + 3 \sin x = 3 \sin x \] - Differentiate \(v\): \[ \frac{dv}{dx} = \cos x \] 4. **Substitute into the Quotient Rule**: \[ \frac{dy}{dx} = \frac{\sin x \cdot (3 \sin x) - (2 - 3 \cos x) \cdot (\cos x)}{\sin^2 x} \] 5. **Simplify the expression**: \[ = \frac{3 \sin^2 x - (2 \cos x - 3 \cos^2 x)}{\sin^2 x} \] \[ = \frac{3 \sin^2 x + 3 \cos^2 x - 2 \cos x}{\sin^2 x} \] Using the identity \(\sin^2 x + \cos^2 x = 1\): \[ = \frac{3 - 2 \cos x}{\sin^2 x} \] 6. **Evaluate at \(x = \frac{\pi}{4}\)**: - Calculate \(\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}\) and \(\sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}\): \[ \frac{dy}{dx} \bigg|_{x = \frac{\pi}{4}} = \frac{3 - 2 \cdot \frac{1}{\sqrt{2}}}{\left(\frac{1}{\sqrt{2}}\right)^2} \] \[ = \frac{3 - \frac{2}{\sqrt{2}}}{\frac{1}{2}} = (3 - \sqrt{2}) \cdot 2 = 6 - 2\sqrt{2} \] ### Final Answer: \[ \frac{dy}{dx} \bigg|_{x = \frac{\pi}{4}} = 6 - 2\sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - C|6 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Try yourself|64 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

If y=sin^(-1)(sin x), then (dy)/(dx) at x=(pi)/(2) is

If y = sqrt((cos x - sin x)(sec 2x + 1)(cos x + sin x)) , Then (dy)/(dx) at x = (5 pi)/(6) is :

If f(x)=|cos x|+|sin x|, then (dy)/(dx) at x=(2 pi)/(3) is equal to

If y=e^(sin x) ,the value of (dy)/(dx) at x=(pi)/(2) is

(i) If y= 6x^(5) -4x^(4) -2x^(2) +5x -9 " find " (dy)/(dx) at x = -1 (ii) If y = (sin x + tan x) , " find " (dy)/(dx) at x = pi/4 (iii) If y = ((2 -3 cos x))/sin x , " find " (dy)/(dx) at x = pi/4

If y=|cos^(3)x|+|sin^(3)x| then (dy)/(dx) at x=(3 pi)/(4)

If x=a cos^(4)t, y=b sin^(4)t then (dy)/(dx) at t = (3 pi)/(4) is

If y=cos x cos 2x cos 4x cos 8x , then (dy)/(dx)" at "x=(pi)/(2) is

If y= (sinx -cos x )^((sin x +cos x ) ),then (dy)/(dx)=