Home
Class 12
MATHS
Let lim(x to 0) ("sin" 2X)/(tan ((x)/(2)...

Let `lim_(x to 0) ("sin" 2X)/(tan ((x)/(2))) = L,` and `lim_(x to 0) (e^(2x) - 1)/(x) = L_(2)` then the value of `L_(1)L_(2)` is

A

4

B

8

C

6

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate two limits and then find the product of those limits. ### Step 1: Evaluate \( L_1 = \lim_{x \to 0} \frac{\sin(2x)}{\tan\left(\frac{x}{2}\right)} \) We can use the properties of limits to simplify this expression. We know that: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \quad \text{and} \quad \lim_{x \to 0} \frac{\tan x}{x} = 1 \] To manipulate our limit, we can rewrite it: \[ L_1 = \lim_{x \to 0} \frac{\sin(2x)}{\tan\left(\frac{x}{2}\right)} = \lim_{x \to 0} \frac{\sin(2x)}{2x} \cdot \frac{2x}{\tan\left(\frac{x}{2}\right)} \] Now, we can separate the limit into two parts: \[ L_1 = \lim_{x \to 0} \frac{\sin(2x)}{2x} \cdot \lim_{x \to 0} \frac{2x}{\tan\left(\frac{x}{2}\right)} \] ### Step 2: Evaluate \( \lim_{x \to 0} \frac{\sin(2x)}{2x} \) Using the limit property: \[ \lim_{x \to 0} \frac{\sin(2x)}{2x} = 1 \] ### Step 3: Evaluate \( \lim_{x \to 0} \frac{2x}{\tan\left(\frac{x}{2}\right)} \) Using the limit property: \[ \lim_{x \to 0} \frac{\tan\left(\frac{x}{2}\right)}{\frac{x}{2}} = 1 \implies \lim_{x \to 0} \frac{2x}{\tan\left(\frac{x}{2}\right)} = 1 \] ### Step 4: Combine the results for \( L_1 \) Now we can combine the results: \[ L_1 = 1 \cdot 1 = 1 \] ### Step 5: Evaluate \( L_2 = \lim_{x \to 0} \frac{e^{2x} - 1}{x} \) We can use the limit property: \[ \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \] To evaluate \( L_2 \): \[ L_2 = \lim_{x \to 0} \frac{e^{2x} - 1}{x} = \lim_{x \to 0} \frac{e^{2x} - 1}{2x} \cdot 2 = 2 \cdot 1 = 2 \] ### Step 6: Calculate \( L_1 \cdot L_2 \) Now we can find the product of \( L_1 \) and \( L_2 \): \[ L_1 \cdot L_2 = 1 \cdot 2 = 2 \] ### Final Answer Thus, the value of \( L_1 L_2 \) is \( 2 \). ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - C|6 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - D|6 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise SECTION - A|50 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Let lim_(xrarr0)(sin2x)/(tan((x)/(k)))=L_(1) and lim_(xrarr0)(e^(2x)-1)/(x)=L_(2), and the value of L_(1) L_(2) is 8, then k is

Let lim_(x to 0) ("sin" 2X)/(x) = a and lim_(x to 0) (3x)/(tan x) = b , then a + b equals

The value of lim_(x to 0)(e^(2x)-1)/(x) is :

If L=lim_(x rarr2)((10-x)^((1)/(3))-2)/(x-2), then the value of (1)/(4L)| is

Let L_(1)=lim_(x rarr0)((sin(2x)+cos(x)-1)/(x)) , L_(2)=lim_(x rarr oo)(sqrt(x^(2)-x)-x) , and L_(3)=lim_(x rarr4)(x^(2)-3x)/(x^(2)-x) , then the value of L_(1)L_(2)+(1)/(L_(3)) is

If L=lim_(x rarr0)(e^(-((x^(2))/(2)))-cos x)/(x^(3)sin x), then the value of (1)/(3L) is

If L=lim_(x rarr oo){x-x^(2)log_(e)(1+(1)/(x))}, then the value of 8L is

If L=lim_(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx) , then the value of 1//(3L) is ________.

If lim_(xto0)(sin^(-1)x-tan^(-1)x)/(3x^3) is equal to L, then the value of (6L+1) is :

If L= lim_(xto2) (root(3)(60+x^(2))-4)/(sin(x-2)) , then the value of 1//L is________.

AAKASH INSTITUTE-LIMITS AND DERIVATIVES -Section - B
  1. Let lim(x to 0) ("sin" 2X)/(x) = a and lim(x to 0) (3x)/(tan x) = b, t...

    Text Solution

    |

  2. Let lim(x to 0) ("sin" 2X)/(tan ((x)/(2))) = L, and lim(x to 0) (e^(2x...

    Text Solution

    |

  3. lim(x to 0) (log (1 + 2x))/(x) + lim(x to 0) (x^(4) - 2^(4))/(x - 2)...

    Text Solution

    |

  4. lim(x to oo) (sqrt(x + 1) - sqrt(x)) equals

    Text Solution

    |

  5. The value of lim(x to 0) ((1)/(x) - cot x) equals

    Text Solution

    |

  6. lim(x to oo) ((x^(4) "sin" ((1)/(x)) + x^(2))/(1 + |x|^(3))) equals

    Text Solution

    |

  7. lim(x to 0) (x tan 2X - X tan x)/((1 - cos 2X)^(2)) equals

    Text Solution

    |

  8. The value of lim(x to 1) (x^(5) - 3x + 2)/(x - 1) equals

    Text Solution

    |

  9. The value of lim(x to 0) (tan x - sin s)/(x^(3)) equals

    Text Solution

    |

  10. lim(x to 0) (2^(x) - 1)/(sqrt(1 + x) - 1) =

    Text Solution

    |

  11. The value of lim(x to 0) (log (5 + x) - log (5 - x))/(x) equals

    Text Solution

    |

  12. m,n in I^(+), then lim(x to 0) ("sin"x^(n))/(("sin"x)^(m)) equals

    Text Solution

    |

  13. The value of lim(x to (pi)/(4)) ("sin" x - cos x)/((x - (pi)/(4))) eq...

    Text Solution

    |

  14. The value of lim(x to 0) ("sin" (pi cos^(2) x))/(x^(2)) equals

    Text Solution

    |

  15. The value of lim(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

    Text Solution

    |

  16. The value of lim(theta to (pi)/(2)) (sec theta - tan theta) equals

    Text Solution

    |

  17. The value of lim(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) ...

    Text Solution

    |

  18. The value of lim(x to 0) ((1)/(x^(2)) - cot x) equals

    Text Solution

    |

  19. The value of lim(h to 0) {(1)/(h(8 + h)^(1//3)) - (1)/(2h)} equals

    Text Solution

    |

  20. The value of lim(x to oo) {sqrt(x+ sqrt(x + sqrt(x))) - sqrt(x)} equa...

    Text Solution

    |