Home
Class 12
MATHS
lim(x to 0) (log (1 + 2x))/(x) + lim(x ...

`lim_(x to 0) (log (1 + 2x))/(x) + lim_(x to 0) (x^(4) - 2^(4))/(x - 2)` equals

A

30

B

32

C

35

D

34

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given limit problem, we will break it down into two parts and evaluate each limit separately. ### Step 1: Evaluate the first limit We need to evaluate: \[ \lim_{x \to 0} \frac{\log(1 + 2x)}{x} \] When we substitute \(x = 0\), we get: \[ \frac{\log(1 + 2 \cdot 0)}{0} = \frac{\log(1)}{0} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's Rule. According to L'Hôpital's Rule, we differentiate the numerator and the denominator. **Differentiating the numerator:** \[ \frac{d}{dx}[\log(1 + 2x)] = \frac{2}{1 + 2x} \] **Differentiating the denominator:** \[ \frac{d}{dx}[x] = 1 \] Now we apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{\log(1 + 2x)}{x} = \lim_{x \to 0} \frac{2}{1 + 2x} \] Substituting \(x = 0\): \[ \frac{2}{1 + 2 \cdot 0} = \frac{2}{1} = 2 \] ### Step 2: Evaluate the second limit Next, we evaluate: \[ \lim_{x \to 2} \frac{x^4 - 2^4}{x - 2} \] Substituting \(x = 2\), we get: \[ \frac{2^4 - 2^4}{2 - 2} = \frac{0}{0} \] This is again an indeterminate form, so we apply L'Hôpital's Rule. **Differentiating the numerator:** \[ \frac{d}{dx}[x^4 - 2^4] = 4x^3 \] **Differentiating the denominator:** \[ \frac{d}{dx}[x - 2] = 1 \] Now we apply L'Hôpital's Rule: \[ \lim_{x \to 2} \frac{x^4 - 2^4}{x - 2} = \lim_{x \to 2} \frac{4x^3}{1} \] Substituting \(x = 2\): \[ 4 \cdot (2^3) = 4 \cdot 8 = 32 \] ### Step 3: Combine the results Now we combine the results of both limits: \[ \lim_{x \to 0} \frac{\log(1 + 2x)}{x} + \lim_{x \to 2} \frac{x^4 - 2^4}{x - 2} = 2 + 32 = 34 \] ### Final Answer Thus, the final answer is: \[ \boxed{34} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - C|6 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - D|6 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise SECTION - A|50 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)(log(1+2x))/(5x)+lim_(xrarr2)(x^(4)-2^(4))/(x-2) is equal to

lim_(x to 0) (2^(x)-1)/(x) +lim_(x to 0) (3^(x)-1)/(x) - lim_(x to 0) ((6^(x)-1)/(x)) equals :

lim_(x rarr0)(log(1-(x)/(2)))/(x)

lim_(x rarr0)(xe^(x)-log(1+x))/(x^(2)) equals

lim_(x rarr0)(x log(1+2x))/(x tan x)

lim_(X rarr0)log|(log(1+x))/(x)|

lim_(x to 0) (sin^(2) x//4)/(x) is equal to

Statement-1 : lim_(x to 0) (1 - cos x)/(x(2^(x) - 1)) = (1)/(2) log_(2) e . Statement : lim_(x to 0) ("sin" x)/(x) = 1 , lim_(x to 0) (a^(x) - 1)/(x) = log a, a gt 0

Lim_(x rarr0)(log(1+x)-x)/(x^(2))

lim_(x rarr0)(xe^(x)-log(1+x))/(x^(2))

AAKASH INSTITUTE-LIMITS AND DERIVATIVES -Section - B
  1. Let lim(x to 0) ("sin" 2X)/(x) = a and lim(x to 0) (3x)/(tan x) = b, t...

    Text Solution

    |

  2. Let lim(x to 0) ("sin" 2X)/(tan ((x)/(2))) = L, and lim(x to 0) (e^(2x...

    Text Solution

    |

  3. lim(x to 0) (log (1 + 2x))/(x) + lim(x to 0) (x^(4) - 2^(4))/(x - 2)...

    Text Solution

    |

  4. lim(x to oo) (sqrt(x + 1) - sqrt(x)) equals

    Text Solution

    |

  5. The value of lim(x to 0) ((1)/(x) - cot x) equals

    Text Solution

    |

  6. lim(x to oo) ((x^(4) "sin" ((1)/(x)) + x^(2))/(1 + |x|^(3))) equals

    Text Solution

    |

  7. lim(x to 0) (x tan 2X - X tan x)/((1 - cos 2X)^(2)) equals

    Text Solution

    |

  8. The value of lim(x to 1) (x^(5) - 3x + 2)/(x - 1) equals

    Text Solution

    |

  9. The value of lim(x to 0) (tan x - sin s)/(x^(3)) equals

    Text Solution

    |

  10. lim(x to 0) (2^(x) - 1)/(sqrt(1 + x) - 1) =

    Text Solution

    |

  11. The value of lim(x to 0) (log (5 + x) - log (5 - x))/(x) equals

    Text Solution

    |

  12. m,n in I^(+), then lim(x to 0) ("sin"x^(n))/(("sin"x)^(m)) equals

    Text Solution

    |

  13. The value of lim(x to (pi)/(4)) ("sin" x - cos x)/((x - (pi)/(4))) eq...

    Text Solution

    |

  14. The value of lim(x to 0) ("sin" (pi cos^(2) x))/(x^(2)) equals

    Text Solution

    |

  15. The value of lim(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

    Text Solution

    |

  16. The value of lim(theta to (pi)/(2)) (sec theta - tan theta) equals

    Text Solution

    |

  17. The value of lim(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) ...

    Text Solution

    |

  18. The value of lim(x to 0) ((1)/(x^(2)) - cot x) equals

    Text Solution

    |

  19. The value of lim(h to 0) {(1)/(h(8 + h)^(1//3)) - (1)/(2h)} equals

    Text Solution

    |

  20. The value of lim(x to oo) {sqrt(x+ sqrt(x + sqrt(x))) - sqrt(x)} equa...

    Text Solution

    |