Home
Class 12
MATHS
lim(x to oo) (sqrt(x + 1) - sqrt(x)) eq...

`lim_(x to oo) (sqrt(x + 1) - sqrt(x))` equals

A

`oo`

B

0

C

`-1`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} (\sqrt{x + 1} - \sqrt{x}) \), we will follow these steps: ### Step 1: Identify the form of the limit As \( x \) approaches infinity, both \( \sqrt{x + 1} \) and \( \sqrt{x} \) approach infinity. Thus, we have an indeterminate form of type \( \infty - \infty \). **Hint:** When you encounter an indeterminate form, consider algebraic manipulation such as rationalization. ### Step 2: Rationalize the expression To resolve the indeterminate form, we can multiply and divide by the conjugate of the expression: \[ \lim_{x \to \infty} \left( \sqrt{x + 1} - \sqrt{x} \right) \cdot \frac{\sqrt{x + 1} + \sqrt{x}}{\sqrt{x + 1} + \sqrt{x}} \] This gives us: \[ \lim_{x \to \infty} \frac{(\sqrt{x + 1} - \sqrt{x})(\sqrt{x + 1} + \sqrt{x})}{\sqrt{x + 1} + \sqrt{x}} = \lim_{x \to \infty} \frac{(x + 1) - x}{\sqrt{x + 1} + \sqrt{x}} \] **Hint:** The numerator simplifies to a difference of squares. ### Step 3: Simplify the numerator The numerator simplifies to: \[ 1 \] Thus, we have: \[ \lim_{x \to \infty} \frac{1}{\sqrt{x + 1} + \sqrt{x}} \] **Hint:** Focus on the dominant terms in the limit as \( x \) approaches infinity. ### Step 4: Analyze the denominator As \( x \) approaches infinity, both \( \sqrt{x + 1} \) and \( \sqrt{x} \) approach \( \sqrt{x} \). Therefore, the denominator simplifies to: \[ \sqrt{x + 1} + \sqrt{x} \approx \sqrt{x} + \sqrt{x} = 2\sqrt{x} \] **Hint:** When \( x \) is very large, \( \sqrt{x + 1} \) behaves similarly to \( \sqrt{x} \). ### Step 5: Substitute back into the limit Now we can rewrite the limit: \[ \lim_{x \to \infty} \frac{1}{\sqrt{x + 1} + \sqrt{x}} = \lim_{x \to \infty} \frac{1}{2\sqrt{x}} \] **Hint:** As \( x \) approaches infinity, consider how the expression behaves. ### Step 6: Evaluate the limit As \( x \) approaches infinity, \( \sqrt{x} \) approaches infinity, so: \[ \frac{1}{2\sqrt{x}} \to 0 \] Thus, we conclude: \[ \lim_{x \to \infty} (\sqrt{x + 1} - \sqrt{x}) = 0 \] ### Final Answer: The limit is \( 0 \). ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - C|6 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - D|6 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise SECTION - A|50 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

lim_ (x rarr oo) (sqrt (x + 1) -sqrt (x))

The value of lim_(x to oo) (sqrt(x^2+1)-sqrt(x^2-1)) is

lim_(x rarr oo)(sqrt(x+sqrt(x))-sqrt(x)) equals

lim_(x rarr oo)(sqrt(x+1)-sqrt(x))

lim_(x rarr oo)((sqrt(x+a)-sqrt(x))/x)

lim_(x rarr oo)(sqrt(x)-3)/(sqrt(x)+3)

lim_(x rarr oo)(sqrt(1+x)-sqrt(1-x))/x

lim_(x rarr oo) (sqrt(x+1)-sqrtx)sqrtx

lim_(x rarr oo)(sqrt(x-a)-sqrt(x-b))

AAKASH INSTITUTE-LIMITS AND DERIVATIVES -Section - B
  1. Let lim(x to 0) ("sin" 2X)/(tan ((x)/(2))) = L, and lim(x to 0) (e^(2x...

    Text Solution

    |

  2. lim(x to 0) (log (1 + 2x))/(x) + lim(x to 0) (x^(4) - 2^(4))/(x - 2)...

    Text Solution

    |

  3. lim(x to oo) (sqrt(x + 1) - sqrt(x)) equals

    Text Solution

    |

  4. The value of lim(x to 0) ((1)/(x) - cot x) equals

    Text Solution

    |

  5. lim(x to oo) ((x^(4) "sin" ((1)/(x)) + x^(2))/(1 + |x|^(3))) equals

    Text Solution

    |

  6. lim(x to 0) (x tan 2X - X tan x)/((1 - cos 2X)^(2)) equals

    Text Solution

    |

  7. The value of lim(x to 1) (x^(5) - 3x + 2)/(x - 1) equals

    Text Solution

    |

  8. The value of lim(x to 0) (tan x - sin s)/(x^(3)) equals

    Text Solution

    |

  9. lim(x to 0) (2^(x) - 1)/(sqrt(1 + x) - 1) =

    Text Solution

    |

  10. The value of lim(x to 0) (log (5 + x) - log (5 - x))/(x) equals

    Text Solution

    |

  11. m,n in I^(+), then lim(x to 0) ("sin"x^(n))/(("sin"x)^(m)) equals

    Text Solution

    |

  12. The value of lim(x to (pi)/(4)) ("sin" x - cos x)/((x - (pi)/(4))) eq...

    Text Solution

    |

  13. The value of lim(x to 0) ("sin" (pi cos^(2) x))/(x^(2)) equals

    Text Solution

    |

  14. The value of lim(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

    Text Solution

    |

  15. The value of lim(theta to (pi)/(2)) (sec theta - tan theta) equals

    Text Solution

    |

  16. The value of lim(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) ...

    Text Solution

    |

  17. The value of lim(x to 0) ((1)/(x^(2)) - cot x) equals

    Text Solution

    |

  18. The value of lim(h to 0) {(1)/(h(8 + h)^(1//3)) - (1)/(2h)} equals

    Text Solution

    |

  19. The value of lim(x to oo) {sqrt(x+ sqrt(x + sqrt(x))) - sqrt(x)} equa...

    Text Solution

    |

  20. lim(x to 2) (([x]^(3))/(3) - [(x)/(3)]^(-3)) is where [x] represents t...

    Text Solution

    |