Home
Class 12
MATHS
The least integer n for which lim(x to 0...

The least integer n for which `lim_(x to 0) ((cos x - 1) (cos x - e^(x)))/(x^(n))` is a finite non-zero number is

A

4

B

3

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to find the least integer \( n \) for which \[ \lim_{x \to 0} \frac{(\cos x - 1)(\cos x - e^x)}{x^n} \] is a finite non-zero number. We'll approach this step by step. ### Step 1: Analyze \( \cos x - 1 \) Using the Taylor series expansion for \( \cos x \) around \( x = 0 \): \[ \cos x = 1 - \frac{x^2}{2} + O(x^4) \] Thus, \[ \cos x - 1 = -\frac{x^2}{2} + O(x^4) \] ### Step 2: Analyze \( \cos x - e^x \) Using the Taylor series expansion for \( e^x \) around \( x = 0 \): \[ e^x = 1 + x + \frac{x^2}{2} + O(x^3) \] So, \[ \cos x - e^x = \left(1 - \frac{x^2}{2} + O(x^4)\right) - \left(1 + x + \frac{x^2}{2} + O(x^3)\right) \] This simplifies to: \[ \cos x - e^x = -x - x^2 + O(x^3) \] ### Step 3: Combine the results Now substituting these results into our limit expression: \[ \lim_{x \to 0} \frac{\left(-\frac{x^2}{2} + O(x^4)\right)\left(-x - x^2 + O(x^3)\right)}{x^n} \] ### Step 4: Simplify the product The leading term in the product \( (\cos x - 1)(\cos x - e^x) \) is: \[ \left(-\frac{x^2}{2}\right)(-x) = \frac{x^3}{2} \] Thus, the limit can be rewritten as: \[ \lim_{x \to 0} \frac{\frac{x^3}{2} + O(x^4)}{x^n} \] ### Step 5: Determine the value of \( n \) This limit simplifies to: \[ \lim_{x \to 0} \frac{x^3/2 + O(x^4)}{x^n} = \lim_{x \to 0} \left(\frac{1}{2} x^{3-n} + O(x^{4-n})\right) \] For this limit to be finite and non-zero, we need the exponent of \( x \) in the leading term to be zero: \[ 3 - n = 0 \implies n = 3 \] ### Conclusion Thus, the least integer \( n \) for which the limit is a finite non-zero number is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - C|6 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - D|6 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise SECTION - A|50 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

The integer n for which lim_(x rarr0)((cos x-1)(cos x-e^(x)))/(x^(n)) is a finite non- zero number is:

The integer n for which lim_(x rarr0)((cos x-1)(cos x-e^(x)))/(x^(n)) is finite nonzero number is

lim_(x to 0) (cos 2x-1)/(cos x-1)

The integer ' n ' for which lim_(x->0)((cos x-1)(cos x-e^x))/(x^n) is a finite non-zero number, is a.1 b. 2 c. 3 d. 4

The integer n for which the lim_(x to 0)(cos^(2)x-cosx-e^(x)cosx+e^(x)-(x^(3))/2)/(x^(n)) is a finite non-zero number is

Find the integral value of n for which lim_(x rarr0)(cos^(2)x-cos x-e^(x)cos x+e^(x)-(x^(3))/(2))/(x^(n)) is a finite nonzero number

The natural number n,for which lim_(x rarr0x rarr0)((27^(x)-9^(x)-3^(x)+1)(cos x-e^(x)))/(x^(2n+1)) is a finite non zero number equal to

The integer ‘n’ for which the value of lim _( x to oo) (( 1- cos x) (e ^(x) - cos x) - (x ^(3))/( 2))/( x ^(n)) is a finite non zero number, is____.

AAKASH INSTITUTE-LIMITS AND DERIVATIVES -Section - B
  1. The value of lim(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

    Text Solution

    |

  2. The value of lim(theta to (pi)/(2)) (sec theta - tan theta) equals

    Text Solution

    |

  3. The value of lim(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) ...

    Text Solution

    |

  4. The value of lim(x to 0) ((1)/(x^(2)) - cot x) equals

    Text Solution

    |

  5. The value of lim(h to 0) {(1)/(h(8 + h)^(1//3)) - (1)/(2h)} equals

    Text Solution

    |

  6. The value of lim(x to oo) {sqrt(x+ sqrt(x + sqrt(x))) - sqrt(x)} equa...

    Text Solution

    |

  7. lim(x to 2) (([x]^(3))/(3) - [(x)/(3)]^(-3)) is where [x] represents t...

    Text Solution

    |

  8. underset(x to 2)(Lt) {[x - 2] + [2 - x] - x} = where [.] represents gr...

    Text Solution

    |

  9. If {x} denotes the fractional part of x, then lim(x to 0) ({x})/(tan ...

    Text Solution

    |

  10. The least integer n for which lim(x to 0) ((cos x - 1) (cos x - e^(x))...

    Text Solution

    |

  11. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0 then u...

    Text Solution

    |

  12. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  13. The value of lim(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) -...

    Text Solution

    |

  14. The value of lim(x + (pi)/(2)) ({1 - tan (x)/(2)}{1-"sin"x})/({1 + ta...

    Text Solution

    |

  15. The value of lim(x to oo) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x...

    Text Solution

    |

  16. If 0 lt alpha lt beta then lim(n to oo) (beta^(n) + alpha^(n))^((1)/(n...

    Text Solution

    |

  17. lim(x to 0) ("sin" (nx)((a - n)nx - tanx))/(x^(2)) = 0 when n is a no...

    Text Solution

    |

  18. lim(x + 5^(+)) (x^(2) - gx + 20)/(x - [x]) is equal to

    Text Solution

    |

  19. lim(x to 0) ("sin"2X)/(2 - sqrt(4 - x)) is

    Text Solution

    |

  20. lim(x to 0) (1 - cos x)/(x sqrt(x^(2))

    Text Solution

    |