Home
Class 12
MATHS
Let alpha and beta be the distinct roots...

Let `alpha` and `beta` be the distinct roots of `ax^(2) + bx + c = 0` then `underset(x to alpha)(Lt) (1 - cos (ax^(2) + bx + c))/((x - alpha)^(2))` equal to

A

`(1)/(2) (alpha - beta)^(2)`

B

`-(a^(2))/(2) (alpha - beta)^(2)`

C

0

D

`(a^(2))/(2) (alpha - beta)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given in the question, we will follow a systematic approach. ### Step-by-step Solution: **Step 1: Identify the limit expression.** We need to evaluate: \[ \lim_{x \to \alpha} \frac{1 - \cos(ax^2 + bx + c)}{(x - \alpha)^2} \] **Step 2: Substitute \(x = \alpha\).** Since \(\alpha\) is a root of the equation \(ax^2 + bx + c = 0\), we have: \[ a\alpha^2 + b\alpha + c = 0 \] Thus, substituting \(x = \alpha\) gives: \[ 1 - \cos(0) = 1 - 1 = 0 \] This results in a \(0/0\) indeterminate form. **Step 3: Apply L'Hôpital's Rule.** Since we have a \(0/0\) form, we can apply L'Hôpital's Rule, which involves differentiating the numerator and the denominator with respect to \(x\). **Step 4: Differentiate the numerator and denominator.** The derivative of the numerator \(1 - \cos(ax^2 + bx + c)\) is: \[ \sin(ax^2 + bx + c) \cdot (2ax + b) \] The derivative of the denominator \((x - \alpha)^2\) is: \[ 2(x - \alpha) \] Thus, we have: \[ \lim_{x \to \alpha} \frac{\sin(ax^2 + bx + c) \cdot (2ax + b)}{2(x - \alpha)} \] **Step 5: Substitute \(x = \alpha\) again.** Substituting \(x = \alpha\) in the new limit gives: \[ \sin(0) \cdot (2a\alpha + b) = 0 \] This again results in a \(0/0\) form. **Step 6: Apply L'Hôpital's Rule again.** We differentiate the numerator and denominator again. The numerator becomes: \[ \cos(ax^2 + bx + c) \cdot (2ax + b)(2ax + b) + \sin(ax^2 + bx + c) \cdot (2a) \] The denominator becomes: \[ 2 \] Now we evaluate: \[ \lim_{x \to \alpha} \frac{\cos(0) \cdot (2a\alpha + b)^2 + 0}{2} = \frac{(2a\alpha + b)^2}{2} \] **Step 7: Simplify the expression.** We know that \(b = -a(\alpha + \beta)\) from Vieta's formulas, where \(\alpha\) and \(\beta\) are the roots of the quadratic equation. Thus: \[ \frac{(2a\alpha - a(\alpha + \beta))^2}{2} = \frac{(a(\alpha - \beta))^2}{2} \] ### Final Result: The limit evaluates to: \[ \frac{a^2(\alpha - \beta)^2}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - C|6 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - D|6 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise SECTION - A|50 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Let alpha and beta be the distinct root of ax^(2) + bx + c=0 then lim_(x to 0) (1- cos (ax^(2)+ bx+c))/((x-alpha)^(2)) is equal to

If alpha,beta are the distinct roots of x^(2)+bx+c=0 , then lim_(x to beta)(e^(2(x^(2)+bx+c))-1-2(x^(2)+bx+c))/((x-beta)^(2)) is equal to

let alpha and beta be the roots of ax^(2)+bx+c then fin the value of (1)/(alpha)-(1)/(beta)

If alpha and beta are the roots of equation ax^2 + bx + c = 0, then the value of alpha/beta + beta/alpha is

if alpha and beta are the roots of ax^(2)+bx+c=0 then the value of {(1)/(a alpha+b)+(1)/(a beta+b)} is

Ifa alpha and beta be the roots of ax^(2)+bx+c=0, then lim_(x rarr alpha)(1+ax^(2)+bx+c)^((1)/(x-a)) is equal to

AAKASH INSTITUTE-LIMITS AND DERIVATIVES -Section - B
  1. The value of lim(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

    Text Solution

    |

  2. The value of lim(theta to (pi)/(2)) (sec theta - tan theta) equals

    Text Solution

    |

  3. The value of lim(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) ...

    Text Solution

    |

  4. The value of lim(x to 0) ((1)/(x^(2)) - cot x) equals

    Text Solution

    |

  5. The value of lim(h to 0) {(1)/(h(8 + h)^(1//3)) - (1)/(2h)} equals

    Text Solution

    |

  6. The value of lim(x to oo) {sqrt(x+ sqrt(x + sqrt(x))) - sqrt(x)} equa...

    Text Solution

    |

  7. lim(x to 2) (([x]^(3))/(3) - [(x)/(3)]^(-3)) is where [x] represents t...

    Text Solution

    |

  8. underset(x to 2)(Lt) {[x - 2] + [2 - x] - x} = where [.] represents gr...

    Text Solution

    |

  9. If {x} denotes the fractional part of x, then lim(x to 0) ({x})/(tan ...

    Text Solution

    |

  10. The least integer n for which lim(x to 0) ((cos x - 1) (cos x - e^(x))...

    Text Solution

    |

  11. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0 then u...

    Text Solution

    |

  12. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  13. The value of lim(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) -...

    Text Solution

    |

  14. The value of lim(x + (pi)/(2)) ({1 - tan (x)/(2)}{1-"sin"x})/({1 + ta...

    Text Solution

    |

  15. The value of lim(x to oo) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x...

    Text Solution

    |

  16. If 0 lt alpha lt beta then lim(n to oo) (beta^(n) + alpha^(n))^((1)/(n...

    Text Solution

    |

  17. lim(x to 0) ("sin" (nx)((a - n)nx - tanx))/(x^(2)) = 0 when n is a no...

    Text Solution

    |

  18. lim(x + 5^(+)) (x^(2) - gx + 20)/(x - [x]) is equal to

    Text Solution

    |

  19. lim(x to 0) ("sin"2X)/(2 - sqrt(4 - x)) is

    Text Solution

    |

  20. lim(x to 0) (1 - cos x)/(x sqrt(x^(2))

    Text Solution

    |