Home
Class 12
MATHS
lim(x to 0) (1 - cos x)/(x sqrt(x^(2))...

`lim_(x to 0) (1 - cos x)/(x sqrt(x^(2))`

A

`(1)/(2)`

B

`-(1)/(2)`

C

0

D

Does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to 0} \frac{1 - \cos x}{x \sqrt{x^2}} \), we can follow these steps: ### Step 1: Simplify the Expression We start with the limit: \[ \lim_{x \to 0} \frac{1 - \cos x}{x \sqrt{x^2}} \] The term \( \sqrt{x^2} \) can be simplified. Since \( \sqrt{x^2} = |x| \), we rewrite the expression: \[ \lim_{x \to 0} \frac{1 - \cos x}{x |x|} \] ### Step 2: Consider the Absolute Value Now, we need to consider the absolute value \( |x| \): - For \( x \to 0^+ \) (approaching from the right), \( |x| = x \). - For \( x \to 0^- \) (approaching from the left), \( |x| = -x \). ### Step 3: Calculate the Left-Hand Limit We first calculate the left-hand limit as \( x \to 0^- \): \[ \lim_{x \to 0^-} \frac{1 - \cos x}{x (-x)} = \lim_{x \to 0^-} \frac{1 - \cos x}{-x^2} \] Using the known limit \( \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \), we have: \[ \lim_{x \to 0^-} \frac{1 - \cos x}{-x^2} = -\frac{1}{2} \] ### Step 4: Calculate the Right-Hand Limit Now we calculate the right-hand limit as \( x \to 0^+ \): \[ \lim_{x \to 0^+} \frac{1 - \cos x}{x x} = \lim_{x \to 0^+} \frac{1 - \cos x}{x^2} \] Using the same known limit: \[ \lim_{x \to 0^+} \frac{1 - \cos x}{x^2} = \frac{1}{2} \] ### Step 5: Compare the Limits Now we compare the two limits: - Left-hand limit: \( -\frac{1}{2} \) - Right-hand limit: \( \frac{1}{2} \) Since the left-hand limit does not equal the right-hand limit, we conclude that: \[ \lim_{x \to 0} \frac{1 - \cos x}{x \sqrt{x^2}} \text{ does not exist.} \] ### Final Answer Thus, the limit does not exist.
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - C|6 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - D|6 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise SECTION - A|50 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 0) (1 -cos x)/(x^(2))

lim_(x to 0) (sqrt(1- cos 2x))/(sqrt2x) =

lim_(x to 0) (x +2 sin x)/(sqrt(x^(2)+2 sin x + 1)-sqrt(sin^(2) x - x+ 1)) is

Statement-1 : lim_(x to 0) (sqrt(1 - cos 2x))/(x) at (x = 0). Right and limit != hand limit

lim_(x to 0) (cos 2x-1)/(cos x-1)

lim_(x rarr0)(1-cos x)/(x^(2))

lim_(x rarr0)(1-cos x sqrt(cos2x))/(x^(2))

(i) lim_(x to (pi)/(2)) (1+cos 2x)/((pi-2x)^(2)) (ii) lim_( x to 0) (1-cos x.sqrt(cos 2x))/(x^(2)) (iii) lim_(thetararr(pi)/(6)) (sin(theta-(pi)/(6)))/(sqrt(3)-2 cos theta)

AAKASH INSTITUTE-LIMITS AND DERIVATIVES -Section - B
  1. The value of lim(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

    Text Solution

    |

  2. The value of lim(theta to (pi)/(2)) (sec theta - tan theta) equals

    Text Solution

    |

  3. The value of lim(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) ...

    Text Solution

    |

  4. The value of lim(x to 0) ((1)/(x^(2)) - cot x) equals

    Text Solution

    |

  5. The value of lim(h to 0) {(1)/(h(8 + h)^(1//3)) - (1)/(2h)} equals

    Text Solution

    |

  6. The value of lim(x to oo) {sqrt(x+ sqrt(x + sqrt(x))) - sqrt(x)} equa...

    Text Solution

    |

  7. lim(x to 2) (([x]^(3))/(3) - [(x)/(3)]^(-3)) is where [x] represents t...

    Text Solution

    |

  8. underset(x to 2)(Lt) {[x - 2] + [2 - x] - x} = where [.] represents gr...

    Text Solution

    |

  9. If {x} denotes the fractional part of x, then lim(x to 0) ({x})/(tan ...

    Text Solution

    |

  10. The least integer n for which lim(x to 0) ((cos x - 1) (cos x - e^(x))...

    Text Solution

    |

  11. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0 then u...

    Text Solution

    |

  12. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  13. The value of lim(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) -...

    Text Solution

    |

  14. The value of lim(x + (pi)/(2)) ({1 - tan (x)/(2)}{1-"sin"x})/({1 + ta...

    Text Solution

    |

  15. The value of lim(x to oo) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x...

    Text Solution

    |

  16. If 0 lt alpha lt beta then lim(n to oo) (beta^(n) + alpha^(n))^((1)/(n...

    Text Solution

    |

  17. lim(x to 0) ("sin" (nx)((a - n)nx - tanx))/(x^(2)) = 0 when n is a no...

    Text Solution

    |

  18. lim(x + 5^(+)) (x^(2) - gx + 20)/(x - [x]) is equal to

    Text Solution

    |

  19. lim(x to 0) ("sin"2X)/(2 - sqrt(4 - x)) is

    Text Solution

    |

  20. lim(x to 0) (1 - cos x)/(x sqrt(x^(2))

    Text Solution

    |