Home
Class 12
MATHS
The value of lim(x to 0) (e^("sin"^(3) ...

The value of `lim_(x to 0) (e^("sin"^(3) x) - cos (("sin" x)^(3)))/(x^(3))` is ____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{e^{(\sin^3 x)} - \cos(\sin^3 x)}{x^3} \] we will follow these steps: ### Step 1: Substitute the limit We start by substituting \( x = 0 \) directly into the expression. \[ e^{(\sin^3 0)} - \cos(\sin^3 0) = e^0 - \cos(0) = 1 - 1 = 0 \] This gives us the indeterminate form \( \frac{0}{0} \), so we need to apply L'Hôpital's Rule or manipulate the expression. ### Step 2: Rewrite the limit We can rewrite the limit as: \[ \lim_{x \to 0} \frac{e^{(\sin^3 x)} - \cos(\sin^3 x)}{x^3} = \lim_{x \to 0} \frac{e^{(\sin^3 x)} - 1 - (\cos(\sin^3 x) - 1)}{x^3} \] ### Step 3: Use Taylor series expansion Next, we can use the Taylor series expansions for \( e^u \) and \( \cos(u) \) around \( u = 0 \): - For \( e^u \): \[ e^u \approx 1 + u + \frac{u^2}{2} + O(u^3) \] - For \( \cos(u) \): \[ \cos(u) \approx 1 - \frac{u^2}{2} + O(u^4) \] Substituting \( u = \sin^3 x \): \[ \sin x \approx x \quad \text{(for small } x\text{)} \] \[ \sin^3 x \approx x^3 \] ### Step 4: Substitute back into the limit Now substituting \( \sin^3 x \) into the expansions: \[ e^{(\sin^3 x)} \approx 1 + \sin^3 x + \frac{(\sin^3 x)^2}{2} \approx 1 + x^3 + \frac{x^6}{2} \] \[ \cos(\sin^3 x) \approx 1 - \frac{(\sin^3 x)^2}{2} \approx 1 - \frac{x^6}{2} \] ### Step 5: Combine the expansions Now substituting these back into our limit: \[ e^{(\sin^3 x)} - \cos(\sin^3 x) \approx \left(1 + x^3 + \frac{x^6}{2}\right) - \left(1 - \frac{x^6}{2}\right) = x^3 + x^6 \] ### Step 6: Substitute into the limit Now we substitute this back into our limit: \[ \lim_{x \to 0} \frac{x^3 + x^6}{x^3} = \lim_{x \to 0} \left(1 + x^3\right) = 1 \] ### Conclusion Thus, the value of the limit is \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - H|2 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - I|6 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - F|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0) (sin x + cos 3x)^(2//x) =

the value of lim_(x rarr0)((sin2x)/(3x)+(x sin x^(2))/(sin x^(3))) is

The value of lim_(x rarr0)(sin x+log_(e)(sqrt(1+sin^(2)x)-sin x))/(sin^(3)x)

The value of lim_(xto0) ((1-cos2x)sin5x)/(x^(2)sin3x) is

The value of lim_(x to 0) (log(sin 5x + cos 5x))/(tan 3x) is equal to

value of lim_(x rarr0)(1-cos^(3)x)/(x sin x*cos x) is

lim_(x rarr0)((1+sin x)^((1)/(3))-(1-sin x)^((1)/(3)))/(x)