Home
Class 12
MATHS
If lim(x to 0) (1)/(x^(2)) (e^(2mx) = e^...

If `lim_(x to 0) (1)/(x^(2)) (e^(2mx) = e^(x) - x) = (3)/(2)` then the value of m is _____

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - H|2 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - I|6 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - F|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(1-cos mx)/(x^(2))

If lim_(x rarr oo)(1+(a)/(x)+(b)/(x^(2)))^(2x)=e^(2) then the values of a and b,are

If L=lim_(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx) , then the value of 1//(3L) is ________.

lim_(x rarr 0) ((1+x+x^2)-e^x)/x^2 =

If lim_(x rarr0)(1+ax+bx^(2))^((2)/(x))=e^(3), then find the value of a and b.

If L=lim_(x rarr0)(e^(-((x^(2))/(2)))-cos x)/(x^(3)sin x), then the value of (1)/(3L) is

lim_(x rarr0)(e^(2x)+e^(x)-2)/(x)

lim_(x->0)(e^(2x)-1)/(3x)

Let lim_(x to 0) ("sin" 2X)/(tan ((x)/(2))) = L, and lim_(x to 0) (e^(2x) - 1)/(x) = L_(2) then the value of L_(1)L_(2) is