Home
Class 12
MATHS
If vecd=lambda(vecaxxvecb)+mu(vecbxxvecc...

If `vecd=lambda(vecaxxvecb)+mu(vecbxxvecc)+t(veccxxveca).[veca,vecbvecc]=(1)/(8)` and `vecd.(veca+vecb+vecc)=8` then `lambda+mu+t` equals …………

Text Solution

Verified by Experts

The correct Answer is:
64
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise SECTION-H (Multiple True-Flase Type Questions)|1 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise Section - J (Akash Challengers Question)|15 Videos

Similar Questions

Explore conceptually related problems

Prove that: [vecaxxvecb ,vecbxxvecc ,veccxxveca] = [veca vecb vecc]^2

If vecd = gamma(veca xx vecb) + mu(vecb xx vecc) + v(vecc xx veca) and [veca vecb vecc]=1/8 , then lambda = mu + v is equal to:

If vec(alpha)=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=1/8 , then x+y+z=

If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=(1)/(3) , then x+y+z is equal to

If vecax(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , and [(veca,vecb,vecc)]=

If veca+vecb+vecc=0 , prove that (vecaxxvecb)=(vecbxxvecc)=(veccxxveca)

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc^(2)] , then lambda is equal to

If [vecbvecc vecd]=24 and (vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(vecaxxvecd)xx(vecbxxvecc)+kveca=0 then k is equal to …………….