Home
Class 12
PHYSICS
Two monochromatic coherent point sources...

Two monochromatic coherent point sources `S_(1)` and `S_(2)` are separated by a distance L. Each sources emits light of wavelength `lambda`, where `L gt gt lambda`. The line `S_(1) S_(2)` when extended meets a screen perpendicular to it at point A. Then

A

The interference fringe are circular is shape

B

Interference fringes are straight lines perpendiculars to line `S_(1)S_(2)A`

C

On the point A intensity is maximum if `L=nlambda` (n is an integer)

D

Point A is always an intensity maximum for any separation L

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Topper's Solved these Questions

  • WAVE OPTICS

    AAKASH INSTITUTE|Exercise Assignment (Section-D (Linked comprehension type questions))|3 Videos
  • WAVE OPTICS

    AAKASH INSTITUTE|Exercise Assignment (Section-E (Assertion-Reason type question))|3 Videos
  • WAVE OPTICS

    AAKASH INSTITUTE|Exercise Assignment (Section-B (objective type question(one option is correct)))|5 Videos
  • UNITS AND MEASUREMENTS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - D)|15 Videos
  • WAVES

    AAKASH INSTITUTE|Exercise ASSIGNMENT ( SECTION-D ( Assertion - Reason Type Questions ))|12 Videos

Similar Questions

Explore conceptually related problems

Two coherent point sources S_1 and S_2 are separated by a small distance d as shown. The fringes obtained on the screen will be

Two coherent point sources S_(1) and S_(2) vibrating in phase emit light of wavelength lambda . The separation between the sources is 2lambda . Consider a line passing through S_(1) and perpendicular to line S_(1) S_(2) . Find the position of farthest and nearest minima. .

Two coherent point sources S_1 and S_2 vibrating in phase emit light of wavelength lamda . The separation between them is 2lamda . The light is collected on a screen placed at a distance Dgt gt lamda from the slit S_1 as shown. The minimum distance, so that intensity at P is equal to the intensity at O

Two coherent sources S_1 and S_2 area separated by a distance four times the wavelength lambda of the source. The sources lie along y axis whereas a detector moves along +x axis. Leaving the origin and far off points the number of points where maxima are observed is

Consider two coherent, monochromatic (wavelength lambda ) sources S_(1) and S_(2) , separated by a distance d. The ratio of intensities of S_(1) and that of S_(2) (which is responsible for interference at point P, where detector is located) is 4. The distance of point P from S_(1) is (if the resultant intensity at point P is equal to (9)/(4) times of intensity of S_(1) ) ("Given : "angleS_(2)S_(1)P=90^(@), d gt0 and n" is a positive integer")