Home
Class 12
MATHS
Let alpha be a root of the equat...

Let ` alpha ` be a root of the equation ` x ^(2) + x + 1 = 0 ` and the matrix ` A = ( 1 ) /(sqrt3) [{:( 1,,1,,1),( 1,, alpha ,, alpha ^(2)), ( 1 ,, alpha ^(2),, alpha ^(4)):}] `
then the matrix ` A ^( 31 ) ` is equal to :

A

` I _ 3 `

B

` A ^(2) `

C

` A `

D

` A ^( 3 ) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first identify the roots of the given quadratic equation, then we will analyze the matrix \( A \), and finally compute \( A^{31} \). ### Step 1: Find the roots of the equation \( x^2 + x + 1 = 0 \) The roots of the equation can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = 1, c = 1 \). Calculating the discriminant: \[ b^2 - 4ac = 1^2 - 4 \cdot 1 \cdot 1 = 1 - 4 = -3 \] Since the discriminant is negative, the roots are complex: \[ x = \frac{-1 \pm \sqrt{-3}}{2} = \frac{-1 \pm i\sqrt{3}}{2} \] Let \( \alpha = \frac{-1 + i\sqrt{3}}{2} \) and \( \alpha^2 = \frac{-1 - i\sqrt{3}}{2} \). ### Step 2: Define the matrix \( A \) The matrix \( A \) is given by: \[ A = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 \\ 1 & \alpha^2 & \alpha^4 \end{pmatrix} \] Since \( \alpha^3 = 1 \) (as \( \alpha \) is a cube root of unity), we can replace \( \alpha^4 \) with \( \alpha \). Thus, the matrix \( A \) simplifies to: \[ A = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 \\ 1 & \alpha^2 & \alpha \end{pmatrix} \] ### Step 3: Compute \( A^2 \) To find \( A^2 \), we compute: \[ A^2 = A \cdot A = \left(\frac{1}{\sqrt{3}}\right)^2 \begin{pmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 \\ 1 & \alpha^2 & \alpha \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 \\ 1 & \alpha^2 & \alpha \end{pmatrix} \] Calculating the product: \[ A^2 = \frac{1}{3} \begin{pmatrix} 3 & 3 & 3 \\ 3 & 1 + \alpha + \alpha^2 & \alpha + \alpha^2 + \alpha^3 \\ 3 & \alpha^2 + \alpha + \alpha^4 & \alpha^2 + \alpha^3 + \alpha \end{pmatrix} \] Using \( 1 + \alpha + \alpha^2 = 0 \) and \( \alpha^3 = 1 \): \[ A^2 = \frac{1}{3} \begin{pmatrix} 3 & 3 & 3 \\ 3 & 0 & 0 \\ 3 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \] ### Step 4: Compute \( A^3 \) Now, we compute \( A^3 = A^2 \cdot A \): \[ A^3 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \cdot A \] Calculating this product gives us: \[ A^3 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \cdot \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 \\ 1 & \alpha^2 & \alpha \end{pmatrix} \] This results in: \[ A^3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 3 & 3 & 3 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix} \] ### Step 5: Compute \( A^{31} \) Since \( A^3 \) is a constant matrix, we can express \( A^{31} \) as: \[ A^{31} = A^{30} \cdot A = (A^3)^{10} \cdot A \] Since \( A^3 \) is a constant matrix, we can conclude: \[ A^{31} = A^3 \] ### Final Result Thus, the final result is: \[ A^{31} = A^3 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise MATH|25 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|3 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematic section B|10 Videos

Similar Questions

Explore conceptually related problems

Let alpha, and beta are the roots of the equation x^(2)+x +1 =0 then

Let alpha, beta be the roots of equation x ^ 2 - x + 1 = 0 and the matrix A = (1 ) /(sqrt3 ) |{:(1,,1,,1),(1,,alpha,,alpha ^2),(1,,beta,,-beta^ 2):}| , the value of det (A. A^T) is

Let alpha be a root of the equation x ^(2) - x+1=0, and the matrix A=[{:(1,1,1),(1, alpha , alpha ^(2)), (1, alpha ^(2), alpha ^(4)):}] and matrix B= [{:(1,-1, -1),(1, alpha, - alpha ^(2)),(-1, -alpha ^(2), - alpha ^(4)):}] then the vlaue of |AB| is:

If alpha is a roots of equation x^(2)+x+1=0 and A=(1)/(sqrt3)[{:(,1,1,1),(,1,alpha,alpha^(2)),(,1,alpha^(2),alpha):}] then A^(31) equal to:

Let alpha and beta be the roots of the equation x^(2) + x + 1 = 0 . Then, for y ne 0 in R. |{:(y+1, alpha,beta), (alpha, y+beta, 1),(beta, 1, y+alpha):}| is

If alpha, beta are roots of the equation x^(2) + x + 1 = 0 , then the equation whose roots are (alpha)/(beta) and (beta)/(alpha) , is

If 1 in (alpha, beta) where alpha, beta are the roots of the equation x^(2)-a(x+1)+3=0 , then

If alpha,beta are the roots of the equation x^(2)-p(x+1)-c=0, then (alpha+1)(beta+1)=

JEE MAINS PREVIOUS YEAR-JEE MAIN-MATHEMATICS
  1. (p to q) wedge (q to -p) is equivalent to

    Text Solution

    |

  2. If g(x)=x^(2)+x+x-1 and g(f(x))=4x^(2)-10x+5 then find f((5)/(4))

    Text Solution

    |

  3. Let alpha be a root of the equation x ^(2) + x + 1 = ...

    Text Solution

    |

  4. Let y=f(x) is a solution of differential equation e^(y)((dy)/(dx)-1)=e...

    Text Solution

    |

  5. lim ( x to 2 ) ( 3 ^(x) + 3 ^( 3 - x ) - 12 ) /( 3 ...

    Text Solution

    |

  6. Let A ( 1, 0 ) , B ( 6, 2 ) and C (( 3 ) /(2), 6 ) be t...

    Text Solution

    |

  7. If f(x)=|2-|x-3|| is non differentiable in X in S. Then value of unde...

    Text Solution

    |

  8. If variance of first n natural number is 10 and variance of first m ev...

    Text Solution

    |

  9. If sum of all the coefficient of even powers in (1-x+x^(2)-x^(3)....x^...

    Text Solution

    |

  10. If theta(1) and theta(2) be respectively the smallest and the largest ...

    Text Solution

    |

  11. Let y(x) is solution of differential equation (y^2 – x) (dy)/(dx) = 1 ...

    Text Solution

    |

  12. The value of c in the Lagrange's mean value theorem for the function f...

    Text Solution

    |

  13. Let 3 + 4 + 8 + 9 + 13 + 14 + 18 +……….40 terms = S. If S = (102)m then...

    Text Solution

    |

  14. The area bounded by x^4 le y le 8x+12 is -

    Text Solution

    |

  15. Pair of tangents are drawn from origin to the circle x^2 + y^2 – 8x – ...

    Text Solution

    |

  16. There are 5 machines. Probability of a machine being faulted is 1/4 . ...

    Text Solution

    |

  17. Let A, B, C and D be four non-empty sets. The contrapositive statement...

    Text Solution

    |

  18. Let f(x) be a polynomial of degree 5 such that x = pm 1 are its critic...

    Text Solution

    |

  19. If .^36C(r+1) xx (k^2-3) = 6 xx .^35Cr , then number of ordered pairs...

    Text Solution

    |

  20. If vec a,vec b , vec c are unit vectors such that veca + vec b+ vecc =...

    Text Solution

    |