Home
Class 12
MATHS
If x= 2 sintheta - sin2theta and y= 2 c...

If `x= 2 sintheta - sin2theta` and `y= 2 costheta - cos 2theta ` then `(d^2y)/(dx^2) " at " theta =pi ` is :

A

`-3/8`

B

`3/2`

C

`-3/4`

D

`3/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second derivative of \( y \) with respect to \( x \) at \( \theta = \pi \). We start with the given equations: \[ x = 2 \sin \theta - \sin 2\theta \] \[ y = 2 \cos \theta - \cos 2\theta \] ### Step 1: Differentiate \( x \) and \( y \) with respect to \( \theta \) First, we differentiate \( x \) with respect to \( \theta \): \[ \frac{dx}{d\theta} = 2 \cos \theta - 2 \cos 2\theta \] Next, we differentiate \( y \) with respect to \( \theta \): \[ \frac{dy}{d\theta} = -2 \sin \theta + 2 \sin 2\theta \] ### Step 2: Find \( \frac{dy}{dx} \) Using the chain rule, we can express \( \frac{dy}{dx} \) as: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{-2 \sin \theta + 2 \sin 2\theta}{2 \cos \theta - 2 \cos 2\theta} \] This simplifies to: \[ \frac{dy}{dx} = \frac{-\sin \theta + \sin 2\theta}{\cos \theta - \cos 2\theta} \] ### Step 3: Simplify \( \frac{dy}{dx} \) Using the identities for sine and cosine, we can further simplify \( \frac{dy}{dx} \): \[ \sin 2\theta = 2 \sin \theta \cos \theta \] \[ \cos 2\theta = 2 \cos^2 \theta - 1 \] Substituting these into the equation gives: \[ \frac{dy}{dx} = \frac{-\sin \theta + 2 \sin \theta \cos \theta}{\cos \theta - (2 \cos^2 \theta - 1)} \] This simplifies to: \[ \frac{dy}{dx} = \frac{\sin \theta (2\cos \theta - 1)}{1 - \cos \theta} \] ### Step 4: Differentiate \( \frac{dy}{dx} \) to find \( \frac{d^2y}{dx^2} \) Now we need to differentiate \( \frac{dy}{dx} \) with respect to \( \theta \) and then divide by \( \frac{dx}{d\theta} \): \[ \frac{d^2y}{dx^2} = \frac{d}{d\theta}\left(\frac{dy}{dx}\right) \cdot \frac{1}{\frac{dx}{d\theta}} \] Calculating \( \frac{d}{d\theta}\left(\frac{dy}{dx}\right) \) involves using the quotient rule. After performing the differentiation and substituting \( \theta = \pi \): ### Step 5: Evaluate at \( \theta = \pi \) At \( \theta = \pi \): - \( \sin \pi = 0 \) - \( \cos \pi = -1 \) - \( \sin 2\pi = 0 \) - \( \cos 2\pi = 1 \) Substituting these values into our expressions will yield: \[ \frac{d^2y}{dx^2} = -\frac{3}{8} \] Thus, the final answer is: \[ \frac{d^2y}{dx^2} \text{ at } \theta = \pi = -\frac{3}{8} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise MATH|25 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|3 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematic section B|10 Videos

Similar Questions

Explore conceptually related problems

Let x = 2sintheta - sin2theta and y = 2costheta - cos2theta find (d^2 y)/(dx^2) at theta= pi

If x=2sin theta-sin2 theta and y=2cos theta-cos2 theta , theta in[0,2 pi], then (d^(2)y)/(dx^(2)) at theta=pi is

If x= a sin 2theta (1+ cos 2theta) , y= b cos 2theta(1- cos 2theta) , then (dy)/(dx) =

If x=2 cos theta- cos 2 theta and y=2 sin theta - sin 2 theta, then (dy)/(dx) =

If x = a sec theta , y =b tan theta , then (d^2y)/(dx^2) at theta = pi/6 is :

if x =2 cos theta - cos 2 theta y = 2 sin theta - sin 2 theta Find (d^(2)y)/(dx^(2)) at theta = pi/2

If x=a(cos 2 theta+2 theta sin 2 theta) " and" y=a(sin 2 theta - 2 theta cos 2 theta) , find (d^(2)y)/(dx^(2)) " at" theta =(pi)/(8) .

If x=sin theta-theta cos theta , y=cos theta+theta sin theta then (d^(2)y)/dx ^2=

If x=2cos theta -cos 2theta ,y=2sin theta -sin 2theta ,then (dy)/(dx) =

JEE MAINS PREVIOUS YEAR-JEE MAIN-MATHEMATICS
  1. If 7x + 6y - 2z = 0, 3x + 4y + 2z = 0, x - 2y - 6z = 0 then which opti...

    Text Solution

    |

  2. if f(x) and g(x) are continuous functions, fog is identity function, g...

    Text Solution

    |

  3. If x= 2 sintheta - sin2theta and y= 2 costheta - cos 2theta then (d...

    Text Solution

    |

  4. If (dx)/dy = (xy)/(x^2 + y^2), y(1) = 1 and y(x) = e then x =

    Text Solution

    |

  5. If minimum value of term free from xx for (x/(sintheta) + 1/(xcostheta...

    Text Solution

    |

  6. If x Sigma(n=0)^(oo) (-1)^n " tan "^(2n) " and " y = Sigma(n=0)^(oo)...

    Text Solution

    |

  7. int((d(theta))/((cos^2 theta)(sec(2theta) + tan(2theta)))) = lambda t...

    Text Solution

    |

  8. Let probability distribution is [[xi,:,1, 2, 3, 4, 5], [pi,:,k^2, 2k, ...

    Text Solution

    |

  9. If f(x) = |[x+a,x+2,x+1],[x+b,x+3,x+2],[x+c,x+4,x+3]| and a - 2b + c =...

    Text Solution

    |

  10. z is a complex number such that |Re(z)| + |Im (z)| = 4 then |z| can't ...

    Text Solution

    |

  11. Let an be the n^(th) term, of a G.P of postive terms. If Sigma(n=1)^...

    Text Solution

    |

  12. If lim(x rarr 0)x[4/x]= A, then the value of x at which f(x) = [x^2]si...

    Text Solution

    |

  13. Let one end of focal chord of parabola y^2 = 8x is (1/2, -2), then equ...

    Text Solution

    |

  14. If 10 different balls are to be placed in 4 distinct boxes at random, ...

    Text Solution

    |

  15. If p rarr (p wedge ~ q) is false. Truth value of p & q will be

    Text Solution

    |

  16. Let A = {x : |x| lt 2} and B = {x : |x - 2| ge 3} then

    Text Solution

    |

  17. Let x + 6y = 8 is tangent to standard ellipse where minor axis is 4/sq...

    Text Solution

    |

  18. Let a function f: [0,5] rarr R be continuous , f(1) =3 and F be defind...

    Text Solution

    |

  19. Let both root of equation ax^2 - 2bx + 5 = 0 are α and root of equatio...

    Text Solution

    |

  20. If f(x) = { x, 0 lt x lt 1/2, 1/2, x = 1/2, 1-x , 1/2 lt x lt 1} and g...

    Text Solution

    |