Home
Class 12
PHYSICS
A(1) and A(2) are two vectors such that ...

`A_(1)` and `A_(2)` are two vectors such that `|A_(1)| = 3 , |A_(2)| = 5` and `|A_(1)+A_(2)| = 5` the value of `(2A_(1)+3A_(2)).(2A_(1)-2A_(2))` is

A

`(237)/(2)`

B

`-123`

C

`(-337)/(2)`

D

`(337)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((2A_1 + 3A_2) \cdot (2A_1 - 2A_2)\) given the magnitudes of the vectors \(A_1\) and \(A_2\) and the magnitude of their sum. ### Step-by-Step Solution: 1. **Given Information:** - \(|A_1| = 3\) - \(|A_2| = 5\) - \(|A_1 + A_2| = 5\) 2. **Using the formula for the magnitude of the sum of two vectors:** \[ |A_1 + A_2|^2 = |A_1|^2 + |A_2|^2 + 2 A_1 \cdot A_2 \] Substituting the known values: \[ 5^2 = 3^2 + 5^2 + 2 A_1 \cdot A_2 \] \[ 25 = 9 + 25 + 2 A_1 \cdot A_2 \] \[ 25 = 34 + 2 A_1 \cdot A_2 \] Rearranging gives: \[ 2 A_1 \cdot A_2 = 25 - 34 = -9 \] Therefore: \[ A_1 \cdot A_2 = -\frac{9}{2} \] 3. **Now, calculate \((2A_1 + 3A_2) \cdot (2A_1 - 2A_2)\):** Using the distributive property of the dot product: \[ (2A_1 + 3A_2) \cdot (2A_1 - 2A_2) = 2A_1 \cdot 2A_1 + 2A_1 \cdot (-2A_2) + 3A_2 \cdot 2A_1 + 3A_2 \cdot (-2A_2) \] Simplifying each term: \[ = 4A_1 \cdot A_1 - 4A_1 \cdot A_2 + 6A_2 \cdot A_1 - 6A_2 \cdot A_2 \] \[ = 4|A_1|^2 - 4A_1 \cdot A_2 + 6A_1 \cdot A_2 - 6|A_2|^2 \] \[ = 4|A_1|^2 + 2A_1 \cdot A_2 - 6|A_2|^2 \] 4. **Substituting the values:** \[ = 4(3^2) + 2\left(-\frac{9}{2}\right) - 6(5^2) \] \[ = 4(9) - 9 - 6(25) \] \[ = 36 - 9 - 150 \] \[ = 36 - 9 - 150 = 36 - 159 = -123 \] ### Final Answer: The value of \((2A_1 + 3A_2) \cdot (2A_1 - 2A_2)\) is \(-123\).
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Chemistry|1 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|522 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR|Exercise PHYSICS|246 Videos

Similar Questions

Explore conceptually related problems

If vec A_(1) and vec A_(2) are two non-collinear unit vectors and if |vec A_(1)+vec A_(2)|=sqrt(3) then the value of (vec A_(1)-vec A_(2))*(2vec A_(1)+vec A_(2)) is

If a_(1) and a_(2) aare two non- collineaar unit vectors and if |a_(1)+a_(2)|=sqrt(3), ,then value of (a_(1)-a_(2)).(2a_(1)-a_(2)) is

If A_(1),A_(2),A_(3),... belongs to AP such that A_(1)+A_(4)+A_(7)+...+A_(28)=140 then maximum value of A_(1).A_(2)...A_(28) is

If a_(1)=2 and a_(n)-a_(n-1)=2n(n>=2), find the value of a_(1)+a_(2)+a_(3)+....+a_(20)

a_(1),a_(2),a_(3),......,a_(n), are in A.P such that a_(1)+a_(3)+a_(5)=-12 and a_(1)a_(2)a_(3)=8 then

a_(1),a_(2),a_(3)...,a_(n) are in A.P.such that a_(1)+a_(3)+a_(5)=-12 and a_(1)a_(2)a_(3)=8 then:

If a_(i)gt0 for i u=1, 2, 3, … ,n and a_(1)a_(2)…a_(n)=1, then the minimum value of (1+a_(1))(1+a_(2))…(1+a_(n)) , is

If vec(a_(1)) and vec(a_(2)) are two non-collinear unit vectors and if |vec(a_(1)) + vec(a_(2))|=sqrt(3) , then the value of (vec(a_(1))-vec(a_(2))). (2 vec(a_(1))+vec(a_(2))) is :

Three positives integers a_(1),a_(2),a_(3) are in A.P. , such that a_(1)+a_(2)+a_(3)= 33 and a_(1) xx a_(2) xx a_(3) = 1155 . Find the intergers a_(1),a_(2),a_(3) .

Consider an A.P*a_(1),a_(2),a_(3),.... such that a_(3)+a_(5)+a_(8)=11 and a_(4)+a_(2)=-2 then the value of a_(1)+a_(6)+a_(7) is....