Home
Class 12
MATHS
If inte^(secx) (secxtanxf(x)+secxtanx+ta...

If `inte^(secx) (secxtanxf(x)+secxtanx+tan^(2)x)dx=e^(secx)f(x)+c`. Then `f(x)` is: (A) `secx+xtamx+1/2` (B) `xsecx+tanx+1/2` (C) `xsecx+x^2tanx+1/2` (D) `secx+tanx+1/2`

A

`secx+xtanx+(1)/(2)`

B

`xsecx+tanx+(1)/(2)`

C

`xsecx+x^(2)tanx+(1)/(2)`

D

`secx+tanx+(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the function \( f(x) \) such that: \[ \int e^{\sec x} \left( \sec x \tan x f(x) + \sec x \tan x + \sec^2 x \right) dx = e^{\sec x} f(x) + C \] ### Step 1: Differentiate both sides Instead of integrating, we can differentiate both sides of the equation. This will help us eliminate the integral and find \( f(x) \). Differentiating the left-hand side using the product rule gives us: \[ \frac{d}{dx} \left( e^{\sec x} \left( \sec x \tan x f(x) + \sec x \tan x + \sec^2 x \right) \right) \] ### Step 2: Apply the product rule Using the product rule, we differentiate \( e^{\sec x} \) and the expression in the parentheses: \[ \frac{d}{dx} \left( e^{\sec x} \right) = e^{\sec x} \sec x \tan x \] Thus, applying the product rule: \[ e^{\sec x} \sec x \tan x \left( \sec x \tan x f(x) + \sec x \tan x + \sec^2 x \right) + e^{\sec x} \frac{d}{dx} \left( \sec x \tan x f(x) + \sec x \tan x + \sec^2 x \right) \] ### Step 3: Differentiate the inside expression Now we differentiate the expression inside the parentheses: \[ \frac{d}{dx} \left( \sec x \tan x f(x) + \sec x \tan x + \sec^2 x \right) \] Using the product rule again on \( \sec x \tan x f(x) \): \[ \sec x \tan x f'(x) + f(x) \frac{d}{dx}(\sec x \tan x) + \frac{d}{dx}(\sec x \tan x) + \frac{d}{dx}(\sec^2 x) \] ### Step 4: Simplify the expression The derivatives of \( \sec x \tan x \) and \( \sec^2 x \) are known: \[ \frac{d}{dx}(\sec x \tan x) = \sec x \tan^2 x + \sec^3 x \] \[ \frac{d}{dx}(\sec^2 x) = 2 \sec^2 x \tan x \] ### Step 5: Set the derivatives equal Now we set the differentiated left-hand side equal to the differentiated right-hand side: \[ e^{\sec x} \sec x \tan x \left( \sec x \tan x f(x) + \sec x \tan x + \sec^2 x \right) + e^{\sec x} \left( \sec x \tan x f'(x) + f(x)(\sec x \tan^2 x + \sec^3 x) + (\sec x \tan^2 x + \sec^3 x) + 2 \sec^2 x \tan x \right) = e^{\sec x} f'(x) \] ### Step 6: Cancel \( e^{\sec x} \) We can cancel \( e^{\sec x} \) from both sides: \[ \sec x \tan x \left( \sec x \tan x f(x) + \sec x \tan x + \sec^2 x \right) + \sec x \tan x f'(x) + f(x)(\sec x \tan^2 x + \sec^3 x) + (\sec x \tan^2 x + \sec^3 x) + 2 \sec^2 x \tan x = f'(x) \] ### Step 7: Solve for \( f(x) \) From the equation, we can isolate \( f'(x) \) and integrate to find \( f(x) \): \[ f'(x) = \sec x \tan x + \sec^2 x \] Integrating gives: \[ f(x) = \int (\sec x \tan x + \sec^2 x) dx = \sec x + \tan x + C \] ### Conclusion Thus, the function \( f(x) \) is: \[ f(x) = \sec x + \tan x + \frac{1}{2} \] ### Final Answer The correct option is (D) \( \sec x + \tan x + \frac{1}{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|250 Videos

Similar Questions

Explore conceptually related problems

inte^(x)secx(1+tanx)dx=?

int(secx+tanx)^(2)dx=

int(1)/(secx+tanx)dx=

int sec x log(secx+tanx)dx=

int x (secx)^2 dx

inte^(x)[secx+log(secx+tanx)]dx=?

int(1)/(a secx+b tanx)dx=

inttan^(-1)(secx+tanx)dx=?

int secx cosec x log(tanx)dx=

inte^(-x)(1-tanx)secx dx is equal to

JEE MAINS PREVIOUS YEAR-JEE MAINS-Physics
  1. If inte^(secx) (secxtanxf(x)+secxtanx+tan^(2)x)dx=e^(secx)f(x)+c. Then...

    Text Solution

    |

  2. The moment of inertia of a solid sphere, about an axis parallel to its...

    Text Solution

    |

  3. A load of mass M kg is suspended from a steel wire of length 2 m and r...

    Text Solution

    |

  4. In the value circuit, C=(sqrt(3))/(2)muF,R2=20omega, L=sqrt(3)/(10)H, ...

    Text Solution

    |

  5. An ideal gas is enclosed in a cylinder at pressure of 2 atm and temper...

    Text Solution

    |

  6. In the figure, given that V(BB) supply can vary from 0 to 5.0V,V(CC)=5...

    Text Solution

    |

  7. In the circuit shown, find C if the effective capacitance of the whole...

    Text Solution

    |

  8. An alpha-particle of mass m suffers 1-dimentinal eleastic collision wi...

    Text Solution

    |

  9. A 10 m long horizontal wire extends from North east ro South East. It ...

    Text Solution

    |

  10. To double the covering range of a TV transmittion tower, its height sh...

    Text Solution

    |

  11. A plano-convex lens (focal length f2, refractive indexmu(2), radius of...

    Text Solution

    |

  12. A vertical closed cylinder is separated into two parts by a frictionle...

    Text Solution

    |

  13. Two satellites, A and B, have masses m and 2m respectively. A is in a ...

    Text Solution

    |

  14. A long cylinderical vessel is half filled with a liquid. When the vess...

    Text Solution

    |

  15. A block kept on a rough inclined plane ,as shown in the figure, remain...

    Text Solution

    |

  16. In a Frank-Hertz experiment,an electron of energy 5.6eV passes through...

    Text Solution

    |

  17. A particle of mass 20 g is released with an initial velocity 5m//s alo...

    Text Solution

    |

  18. A galavanometer, whose resistance is 50 ohm has 25 divisions in it. Wh...

    Text Solution

    |

  19. A soap bubble,blown by a mechanical pump at the mouth of a tube, incre...

    Text Solution

    |

  20. In the given circuit diagram, the currents, I1=-0.3A,I4=0.8A and I5=0....

    Text Solution

    |

  21. A resonance tube is old and has jagged end. It is still used in the la...

    Text Solution

    |