Home
Class 11
PHYSICS
int(dx)/(sqrt(2x-x^2) = a^n sin^-1[x/a-1...

`int(dx)/(sqrt(2x-x^2) = a^n sin^-1[x/a-1]`
The vale of n is
You may use dimensional analysis to solve the problem.

A

0

B

-1

C

1

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO PHYSICS

    HC VERMA|Exercise Objective 2|3 Videos
  • INTRODUCTION TO PHYSICS

    HC VERMA|Exercise Exercises|19 Videos
  • INTRODUCTION TO PHYSICS

    HC VERMA|Exercise Short Answer|7 Videos
  • HEAT TRANSFER

    HC VERMA|Exercise EXERCIESE|1 Videos
  • KINETIC THEORY OF GASES

    HC VERMA|Exercise Exercises|62 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(a^(2)-x^(2)))=sin^(-1)(x/a)+C

int(dx)/(x sqrt(x^(2n)-a^(2n)))

Given that int (dx)/(sqrt(2 ax - x^2)) = a^n sin^(-1) ((x-a)/(a)) where a is a constant. Using dimensional analysis. The value of n is

int(dx)/(sqrt(2)ax-x^(2))=a^(n)sin^(-1){(x-a)/(a)}a->

int(1)/((sqrt(1-x^(2)))sin^(-1)x)dx

int(1)/(sqrt(8+3x-n^(2)))dx

int (sin^-1x)/sqrt(1-x^2) dx.