Home
Class 12
MATHS
int(0)^(pi)(1)/(1+sin x)dx is equal to...

`int_(0)^(pi)(1)/(1+sin x)dx` is equal to

A

1

B

2

C

-1

D

-2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} \frac{1}{1 + \sin x} \, dx \), we can use a substitution and some properties of trigonometric functions. Here’s a step-by-step solution: ### Step 1: Use the identity for \( \sin x \) We can express \( \sin x \) in terms of \( \tan \) using the half-angle identity: \[ \sin x = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \] Thus, \[ 1 + \sin x = 1 + \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} = \frac{(1 + \tan^2 \frac{x}{2}) + 2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} = \frac{1 + 2 \tan \frac{x}{2} + \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \] This simplifies to: \[ 1 + \sin x = \frac{(1 + \tan \frac{x}{2})^2}{1 + \tan^2 \frac{x}{2}} \] ### Step 2: Substitute \( t = \tan \frac{x}{2} \) Let \( t = \tan \frac{x}{2} \). Then, the differential \( dx \) can be expressed as: \[ dx = \frac{2}{1 + t^2} \, dt \] Also, the limits change as follows: - When \( x = 0 \), \( t = \tan(0) = 0 \) - When \( x = \pi \), \( t = \tan\left(\frac{\pi}{2}\right) = \infty \) ### Step 3: Rewrite the integral Now, substituting these into the integral: \[ I = \int_{0}^{\infty} \frac{1}{\frac{(1 + t)^2}{1 + t^2}} \cdot \frac{2}{1 + t^2} \, dt \] This simplifies to: \[ I = \int_{0}^{\infty} \frac{2(1 + t^2)}{(1 + t)^2} \cdot \frac{1}{1 + t^2} \, dt = \int_{0}^{\infty} \frac{2}{(1 + t)^2} \, dt \] ### Step 4: Evaluate the integral Now, we can evaluate the integral: \[ I = 2 \int_{0}^{\infty} \frac{1}{(1 + t)^2} \, dt \] The integral \( \int \frac{1}{(1 + t)^2} \, dt \) can be computed as: \[ \int \frac{1}{(1 + t)^2} \, dt = -\frac{1}{1 + t} + C \] Evaluating from \( 0 \) to \( \infty \): \[ \left[-\frac{1}{1 + t}\right]_{0}^{\infty} = \left(0 - (-1)\right) = 1 \] Thus, \[ I = 2 \cdot 1 = 2 \] ### Final Answer The value of the integral is: \[ \int_{0}^{\pi} \frac{1}{1 + \sin x} \, dx = 2 \]

To solve the integral \( I = \int_{0}^{\pi} \frac{1}{1 + \sin x} \, dx \), we can use a substitution and some properties of trigonometric functions. Here’s a step-by-step solution: ### Step 1: Use the identity for \( \sin x \) We can express \( \sin x \) in terms of \( \tan \) using the half-angle identity: \[ \sin x = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \] Thus, ...
Promotional Banner

Topper's Solved these Questions

  • PRACTICE SET 14

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Paper 2 (Mathematics)|50 Videos
  • PRACTICE SET 16

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Paper - 2 (MATHEMATICS )|50 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi)(x)/(1+sin x)dx

int_(0)^( pi)(sin nx)/(sin x)dx is equal to

int_(0)^(pi) dx/(1-sin x)=

int_(0)^(pi//2)(1)/(2-sin x)dx=

int_(0)^(2 pi)(sin x+|sin x|)dx is equal to

What is int_(0)^(pi)e^(x) sin x dx equal to ?

int_(0)^(2pi) sin^(5) (x/4) dx is equal to

int_(0)^( pi)xf(sin x)dx is equal to

int_(0)^(pi) x sin^(4) x dx is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-PRACTICE SET 15-PAPER 2 (MATHEMATICS)
  1. If the function f(x)={((1-cosx)/(x^(2))",","for "x ne 0),(k,"for " x ...

    Text Solution

    |

  2. The value of lim(x to oo)((pi)/(2)-tan^(-1)x)^(x//1) is

    Text Solution

    |

  3. int(0)^(pi)(1)/(1+sin x)dx is equal to

    Text Solution

    |

  4. The area bounded in the first quadrant by the normal at (1,2)on the cu...

    Text Solution

    |

  5. Probability of throwing 16 in one throw with there dice is

    Text Solution

    |

  6. The probability of choosing a number divisible by 6 or 8 from among 1 ...

    Text Solution

    |

  7. The records of a hospital show that 10% of the cases of a certain dise...

    Text Solution

    |

  8. In DeltaABC,a=2,b=3andsinA=(2)/(3), then B is equal to

    Text Solution

    |

  9. If sin^(-1)x=pi/5,forsom ex in (-1,1), then find the value of cos^(-1)...

    Text Solution

    |

  10. Equation cos 2x+7=a(2-sin x) can have a real solution for

    Text Solution

    |

  11. An integrating factor of the differential equation ylogy(dx)/(dy)+x-...

    Text Solution

    |

  12. The general solution of the differential equaiton (1+y^(2))dx+(1+x^(2)...

    Text Solution

    |

  13. int (e^(x)+e^(-x))^(2)*(e^(x)-e^(-x))dx is equal to

    Text Solution

    |

  14. The ratio in which YZ-plane divided the line segment joining (-3,4,-2)...

    Text Solution

    |

  15. The cosine of the angle of the triangle with vertices A(1,-1,2),B(6,11...

    Text Solution

    |

  16. The angle between the line (3x-1)/3=(y+3)/(-1)=(5-2z)/4 and the plane ...

    Text Solution

    |

  17. Find the co-ordinates of the foot of perpendicular drawn from point A...

    Text Solution

    |

  18. If A and B are two enents such that P (A uuB)=3/4, P(A nnB)=1/4, P(bar...

    Text Solution

    |

  19. एक व्यक्‍ति के बारे में ज्ञात है कि वह 4 में से 3 बार सत्य बोलता है। व...

    Text Solution

    |

  20. The system of equations 2x - y + z = 0,x-2y + z = 0 and lambdax - y +...

    Text Solution

    |