Home
Class 12
MATHS
If alpha+beta-gamma=pi, then sin^(2)alph...

If `alpha+beta-gamma=pi`, then `sin^(2)alpha+sin^(2)beta-sin^(2)gamma` is equal to

A

`2sinalphasinbetacosgamma`

B

`2cosalphacosbetacosgamma`

C

`2sinalphasinbetasingamma`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin^2 \alpha + \sin^2 \beta - \sin^2 \gamma \) given that \( \alpha + \beta - \gamma = \pi \). ### Step-by-Step Solution: 1. **Use the given equation**: We start with the equation: \[ \alpha + \beta - \gamma = \pi \] Rearranging gives us: \[ \gamma = \alpha + \beta - \pi \] 2. **Substitute for \(\sin^2 \gamma\)**: We can express \(\sin^2 \gamma\) using the sine function: \[ \sin \gamma = \sin(\alpha + \beta - \pi) = -\sin(\alpha + \beta) \] Therefore: \[ \sin^2 \gamma = \sin^2(\alpha + \beta - \pi) = \sin^2(\alpha + \beta) \] 3. **Use the sine addition formula**: The sine addition formula states: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] Thus: \[ \sin^2(\alpha + \beta) = (\sin \alpha \cos \beta + \cos \alpha \sin \beta)^2 \] 4. **Expand \(\sin^2(\alpha + \beta)\)**: Expanding this gives: \[ \sin^2(\alpha + \beta) = \sin^2 \alpha \cos^2 \beta + 2 \sin \alpha \cos \alpha \sin \beta \cos \beta + \cos^2 \alpha \sin^2 \beta \] 5. **Combine the terms**: Now substituting back into our expression: \[ \sin^2 \alpha + \sin^2 \beta - \sin^2 \gamma = \sin^2 \alpha + \sin^2 \beta - \sin^2(\alpha + \beta) \] 6. **Use the identity**: We can use the identity \( \sin^2 A + \sin^2 B - \sin^2(A + B) = 2 \sin A \sin B \) for our case: \[ \sin^2 \alpha + \sin^2 \beta - \sin^2(\alpha + \beta) = 2 \sin \alpha \sin \beta \cos(\alpha - \beta) \] 7. **Final expression**: Therefore, we conclude: \[ \sin^2 \alpha + \sin^2 \beta - \sin^2 \gamma = 2 \sin \alpha \sin \beta \cos(\alpha - \beta) \] ### Final Result: Thus, the value of \( \sin^2 \alpha + \sin^2 \beta - \sin^2 \gamma \) is: \[ \boxed{2 \sin \alpha \sin \beta \cos(\alpha - \beta)} \]

To solve the problem, we need to find the value of \( \sin^2 \alpha + \sin^2 \beta - \sin^2 \gamma \) given that \( \alpha + \beta - \gamma = \pi \). ### Step-by-Step Solution: 1. **Use the given equation**: We start with the equation: \[ \alpha + \beta - \gamma = \pi ...
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORER|35 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos

Similar Questions

Explore conceptually related problems

If alpha+beta-gamma=pi, and sin^(2)alpha+sin^(2)beta-sin^(2)gamma=lambda s in alpha s in beta cos gamma then write the value of lambda

If alpha + beta- gamma= pi , prove that sin^(2)alpha + sin^(2)beta - sin^(2)gamma = 2sin alpha sin beta cos gamma .

Given alpha+beta-gamma=pi, prove that sin^(2)alpha+sin^(2)beta-sin^(2)gamma=2sin alpha sin beta cos gamma

Given alpha+beta-gamma=pi, prove that sin^(2)alpha+sin^(2)beta-sin^(2)gamma=2sin alpha sin beta cos gamma

If alpha + beta + gamma=pi, then the value of sin ^(2) alpha + sin ^(2) beta - sin^(2) gamma is equal to

If alpha + beta+gamma=pi , prove that sin^2 alpha + sin^ beta - sin^2 gamma = 2sinalpha sinbeta cosgamma

If sin alpha+sin beta+sin gamma=0=cos alpha+cos beta+cos gamma, then the value of sin^(2)alpha+sin^(2)beta+sin^(2)gamma, is

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-FACTORIZATION FORMULAE -EXERCISE 2
  1. If alpha+beta-gamma=pi, then sin^(2)alpha+sin^(2)beta-sin^(2)gamma is ...

    Text Solution

    |

  2. The vlaue of cos^(2)76^(@)+cos^(2)16-cos76^(@)cos16^(@),is

    Text Solution

    |

  3. The value of cos52^@+cos68^@+cos172^@ is

    Text Solution

    |

  4. The value of sin\ pi/16 sin\ (3pi)/16 sin\ (5pi)/16 sin\ (7pi)/16 is

    Text Solution

    |

  5. The value of cot70^(@)+4cos70^@ is

    Text Solution

    |

  6. 2cos ""(pi)/(13)cos""(9pi)/(13)+cos""(3pi)/(13)+cos""(5pi)/(13)=0

    Text Solution

    |

  7. If A+B+C=piandsinC+sinAcosB=0, then tanA.cotB is equal to

    Text Solution

    |

  8. If x +y+z = 180^@, then cos2x + cos2y-cos2z is equal to

    Text Solution

    |

  9. If A +B+C= pi and m/C is obtuse then tan A. tan B is

    Text Solution

    |

  10. If A+B+C=180^(@), then (sin2A+sin2B+sin2C)/(cosA+cosB+cosC-1) is equal...

    Text Solution

    |

  11. If A+B+C=270^@ , then cos2A+cos2B+cos2C+4sinAsin B sinC=

    Text Solution

    |

  12. If A, B, C are the angles of a triangle then sin^(2)A+sin^(2)B+sin^(2)...

    Text Solution

    |

  13. If A+B+C=180^(@), then the value of cot.(A)/(2)+cot.(B)/(2)+cot.(C)/(2...

    Text Solution

    |

  14. In triangle A B C ,tanA+tanB+tanC=6 and tanAtanB=2, then the values of...

    Text Solution

    |

  15. If a DeltaABC, the value of sinA+sinB+sinC is

    Text Solution

    |

  16. If cosA=cosBcosC and A+B+C=pi, then the value of cotBcotC is

    Text Solution

    |

  17. If sin theta+sin2theta+sin3theta=sin alpha and cos theta+cos 2theta+co...

    Text Solution

    |

  18. tan2 0^0tan4 0^0tan6 0^0tan8 0^0

    Text Solution

    |

  19. sin1 2^(@)sin4 8^(@)sin5 4^(@)=

    Text Solution

    |

  20. If A, B, C, D be the angles of acyclic quadrilateral, show that : cosA...

    Text Solution

    |

  21. If A+B+C=pi, prove that : (cosA)/(sinb sinC) + (cosB)/(sinC sin) + (co...

    Text Solution

    |