Home
Class 12
MATHS
If A+B+C=180^(@), then Sigmatan.(A)/(2)t...

If `A+B+C=180^(@)`, then `Sigmatan.(A)/(2)tan.(B)/(2)` is

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sum \frac{\tan(A/2)}{\tan(B/2)} \) given that \( A + B + C = 180^\circ \). ### Step-by-step Solution: 1. **Understanding the Given Condition**: We know that \( A + B + C = 180^\circ \). This implies that \( C = 180^\circ - (A + B) \). 2. **Using Half-Angle Identities**: From the condition, we can express \( A/2 + B/2 = 90^\circ - C/2 \). This means: \[ \frac{A}{2} + \frac{B}{2} = 90^\circ - \frac{C}{2} \] 3. **Applying the Tangent Addition Formula**: We can use the tangent addition formula: \[ \tan\left(\frac{A}{2} + \frac{B}{2}\right) = \frac{\tan\left(\frac{A}{2}\right) + \tan\left(\frac{B}{2}\right)}{1 - \tan\left(\frac{A}{2}\right) \tan\left(\frac{B}{2}\right)} \] Since \( \frac{A}{2} + \frac{B}{2} = 90^\circ - \frac{C}{2} \), we have: \[ \tan\left(90^\circ - \frac{C}{2}\right) = \cot\left(\frac{C}{2}\right) \] 4. **Setting Up the Equation**: Therefore, we can equate: \[ \frac{\tan\left(\frac{A}{2}\right) + \tan\left(\frac{B}{2}\right)}{1 - \tan\left(\frac{A}{2}\right) \tan\left(\frac{B}{2}\right)} = \cot\left(\frac{C}{2}\right) \] 5. **Expressing Cotangent**: Recall that \( \cot\left(\frac{C}{2}\right) = \frac{1}{\tan\left(\frac{C}{2}\right)} \). Thus, we can rewrite the equation: \[ \tan\left(\frac{A}{2}\right) + \tan\left(\frac{B}{2}\right) = \cot\left(\frac{C}{2}\right) \left(1 - \tan\left(\frac{A}{2}\right) \tan\left(\frac{B}{2}\right)\right) \] 6. **Final Value**: After simplifying, we find that: \[ \tan\left(\frac{A}{2}\right) \tan\left(\frac{B}{2}\right) + \tan\left(\frac{A}{2}\right) + \tan\left(\frac{B}{2}\right) = 1 \] This implies: \[ \sum \frac{\tan(A/2)}{\tan(B/2)} = 1 \] ### Conclusion: Thus, the value of \( \sum \frac{\tan(A/2)}{\tan(B/2)} \) is **1**.

To solve the problem, we need to find the value of \( \sum \frac{\tan(A/2)}{\tan(B/2)} \) given that \( A + B + C = 180^\circ \). ### Step-by-step Solution: 1. **Understanding the Given Condition**: We know that \( A + B + C = 180^\circ \). This implies that \( C = 180^\circ - (A + B) \). 2. **Using Half-Angle Identities**: ...
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORER|35 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos

Similar Questions

Explore conceptually related problems

If A+B+C=180^(@) , then tan^(2)""(A)/(2)+tan^(2)""(B)/(2)+tan^(2)""(C)/(2)=?

If A+B+C=180^(@) , then the value of cot.(A)/(2)+cot.(B)/(2)+cot.(C)/(2) will be

If A+B+C=180^(@),tan((A)/(2)=(5)/(6)) and tan((B)/(2)=(20)/(37)) then tan((C)/(2))=

If A+B+C=180^(@), then prove that tan^(2)((theta)/(2))=tan((B)/(2))tan((C)/(2))* when cos theta(sin theta+sin theta)=sin A

If A+B+C=pi and sin(A+(C)/(2))=k sin((C)/(2)), then tan((A)/(2))*tan((B)/(2)) is equal to

If A+B + C =180^(@), then tan A + tan B + tan C is equal to

If A + B + C = 180^(@) , then prove that tan A + tan B + tan C = tan A tan B tan C.

If A+B+C=pi, show that : tan.(A)/(2)tan.(B)/(2)+tan.(B)/(2)tan.(C)/(2)+tan.(C)/(2)tan.(A)/(2)=1 Hence deduce that : cot.(A)/(2)+cot.(B)/(2)+.cot.(C)/(2)=cot.(A)/(2).cot.(B)/(2)tan.(C)/(2) .

A+B+C=360^(@)rArr tan(A)/(2)+tan(B)/(2)+tan(C)/(2)=

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-FACTORIZATION FORMULAE -EXERCISE 2
  1. If A+B+C=180^(@), then Sigmatan.(A)/(2)tan.(B)/(2) is

    Text Solution

    |

  2. The vlaue of cos^(2)76^(@)+cos^(2)16-cos76^(@)cos16^(@),is

    Text Solution

    |

  3. The value of cos52^@+cos68^@+cos172^@ is

    Text Solution

    |

  4. The value of sin\ pi/16 sin\ (3pi)/16 sin\ (5pi)/16 sin\ (7pi)/16 is

    Text Solution

    |

  5. The value of cot70^(@)+4cos70^@ is

    Text Solution

    |

  6. 2cos ""(pi)/(13)cos""(9pi)/(13)+cos""(3pi)/(13)+cos""(5pi)/(13)=0

    Text Solution

    |

  7. If A+B+C=piandsinC+sinAcosB=0, then tanA.cotB is equal to

    Text Solution

    |

  8. If x +y+z = 180^@, then cos2x + cos2y-cos2z is equal to

    Text Solution

    |

  9. If A +B+C= pi and m/C is obtuse then tan A. tan B is

    Text Solution

    |

  10. If A+B+C=180^(@), then (sin2A+sin2B+sin2C)/(cosA+cosB+cosC-1) is equal...

    Text Solution

    |

  11. If A+B+C=270^@ , then cos2A+cos2B+cos2C+4sinAsin B sinC=

    Text Solution

    |

  12. If A, B, C are the angles of a triangle then sin^(2)A+sin^(2)B+sin^(2)...

    Text Solution

    |

  13. If A+B+C=180^(@), then the value of cot.(A)/(2)+cot.(B)/(2)+cot.(C)/(2...

    Text Solution

    |

  14. In triangle A B C ,tanA+tanB+tanC=6 and tanAtanB=2, then the values of...

    Text Solution

    |

  15. If a DeltaABC, the value of sinA+sinB+sinC is

    Text Solution

    |

  16. If cosA=cosBcosC and A+B+C=pi, then the value of cotBcotC is

    Text Solution

    |

  17. If sin theta+sin2theta+sin3theta=sin alpha and cos theta+cos 2theta+co...

    Text Solution

    |

  18. tan2 0^0tan4 0^0tan6 0^0tan8 0^0

    Text Solution

    |

  19. sin1 2^(@)sin4 8^(@)sin5 4^(@)=

    Text Solution

    |

  20. If A, B, C, D be the angles of acyclic quadrilateral, show that : cosA...

    Text Solution

    |

  21. If A+B+C=pi, prove that : (cosA)/(sinb sinC) + (cosB)/(sinC sin) + (co...

    Text Solution

    |