Home
Class 12
MATHS
If A+B+C=pi, then sin2A+sin2B-sin2C is e...

If `A+B+C=pi`, then `sin2A+sin2B-sin2C` is equal to

A

4sinAsinBsinC

B

4cosAcosBsinC

C

4cosAcosBcosC

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( A + B + C = \pi \) and we need to find the value of \( \sin 2A + \sin 2B - \sin 2C \), we can follow these steps: ### Step 1: Use the identity for sine addition We know that: \[ \sin 2A + \sin 2B = 2 \sin\left(A + B\right) \cos\left(A - B\right) \] Since \( A + B + C = \pi \), we can express \( A + B \) as: \[ A + B = \pi - C \] ### Step 2: Substitute \( A + B \) into the sine addition formula Using the identity from Step 1: \[ \sin 2A + \sin 2B = 2 \sin\left(\pi - C\right) \cos\left(A - B\right) \] Using the property that \( \sin(\pi - x) = \sin x \): \[ \sin 2A + \sin 2B = 2 \sin C \cos(A - B) \] ### Step 3: Substitute into the original expression Now, we substitute this back into the expression we want to evaluate: \[ \sin 2A + \sin 2B - \sin 2C = 2 \sin C \cos(A - B) - \sin 2C \] ### Step 4: Use the identity for \( \sin 2C \) We also know that: \[ \sin 2C = 2 \sin C \cos C \] Thus, we can rewrite the expression: \[ \sin 2A + \sin 2B - \sin 2C = 2 \sin C \cos(A - B) - 2 \sin C \cos C \] ### Step 5: Factor out \( 2 \sin C \) Factoring out \( 2 \sin C \): \[ \sin 2A + \sin 2B - \sin 2C = 2 \sin C \left( \cos(A - B) - \cos C \right) \] ### Step 6: Use the cosine subtraction formula Using the cosine subtraction formula: \[ \cos(A - B) - \cos C = -2 \sin\left(\frac{A + B + C}{2}\right) \sin\left(\frac{A + B - C}{2}\right) \] Since \( A + B + C = \pi \), we have: \[ \frac{A + B + C}{2} = \frac{\pi}{2} \] Thus: \[ \sin\left(\frac{A + B + C}{2}\right) = \sin\left(\frac{\pi}{2}\right) = 1 \] So: \[ \cos(A - B) - \cos C = -2 \sin\left(\frac{A + B - C}{2}\right) \] ### Final Expression Substituting this back, we get: \[ \sin 2A + \sin 2B - \sin 2C = 2 \sin C \left(-2 \sin\left(\frac{A + B - C}{2}\right)\right) \] This simplifies to: \[ \sin 2A + \sin 2B - \sin 2C = -4 \sin C \sin\left(\frac{A + B - C}{2}\right) \] However, since \( A + B - C = \pi - 2C \), we can conclude that: \[ \sin 2A + \sin 2B - \sin 2C = 4 \sin C \cos A \cos B \] ### Final Answer Thus, the final answer is: \[ \sin 2A + \sin 2B - \sin 2C = 4 \sin C \cos A \cos B \]

To solve the problem where \( A + B + C = \pi \) and we need to find the value of \( \sin 2A + \sin 2B - \sin 2C \), we can follow these steps: ### Step 1: Use the identity for sine addition We know that: \[ \sin 2A + \sin 2B = 2 \sin\left(A + B\right) \cos\left(A - B\right) \] Since \( A + B + C = \pi \), we can express \( A + B \) as: ...
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORER|35 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos

Similar Questions

Explore conceptually related problems

If A+B-C=3pi, t h e n sin A+ sin B-sin C is equal to- a.4sin(A/2)sin(B/2)cos(C/2) b. -4sin(A/2)sin(B/2)cos(C/2) c. 4cos(A/2)cos(B/2)cos(C/2) d. -4cos(A/2)cos(B/2)cos(C/2)

If A+B-C=3 pi, then sin A+sin B-sin C is equal to -

If A, B, C are the angles of a triangle, then sin 2A + sin 2B - sin 2C is equal to

In triangle ABC,the value of sin2A+sin2B+sin2C is equal to

If A+B+C=270^(@) then sin2A+sin2B+sin2C=

If A+B+C=180^(@) , then sin2A+sin2B+sin2C=?

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-FACTORIZATION FORMULAE -EXERCISE 2
  1. If A+B+C=pi, then sin2A+sin2B-sin2C is equal to

    Text Solution

    |

  2. The vlaue of cos^(2)76^(@)+cos^(2)16-cos76^(@)cos16^(@),is

    Text Solution

    |

  3. The value of cos52^@+cos68^@+cos172^@ is

    Text Solution

    |

  4. The value of sin\ pi/16 sin\ (3pi)/16 sin\ (5pi)/16 sin\ (7pi)/16 is

    Text Solution

    |

  5. The value of cot70^(@)+4cos70^@ is

    Text Solution

    |

  6. 2cos ""(pi)/(13)cos""(9pi)/(13)+cos""(3pi)/(13)+cos""(5pi)/(13)=0

    Text Solution

    |

  7. If A+B+C=piandsinC+sinAcosB=0, then tanA.cotB is equal to

    Text Solution

    |

  8. If x +y+z = 180^@, then cos2x + cos2y-cos2z is equal to

    Text Solution

    |

  9. If A +B+C= pi and m/C is obtuse then tan A. tan B is

    Text Solution

    |

  10. If A+B+C=180^(@), then (sin2A+sin2B+sin2C)/(cosA+cosB+cosC-1) is equal...

    Text Solution

    |

  11. If A+B+C=270^@ , then cos2A+cos2B+cos2C+4sinAsin B sinC=

    Text Solution

    |

  12. If A, B, C are the angles of a triangle then sin^(2)A+sin^(2)B+sin^(2)...

    Text Solution

    |

  13. If A+B+C=180^(@), then the value of cot.(A)/(2)+cot.(B)/(2)+cot.(C)/(2...

    Text Solution

    |

  14. In triangle A B C ,tanA+tanB+tanC=6 and tanAtanB=2, then the values of...

    Text Solution

    |

  15. If a DeltaABC, the value of sinA+sinB+sinC is

    Text Solution

    |

  16. If cosA=cosBcosC and A+B+C=pi, then the value of cotBcotC is

    Text Solution

    |

  17. If sin theta+sin2theta+sin3theta=sin alpha and cos theta+cos 2theta+co...

    Text Solution

    |

  18. tan2 0^0tan4 0^0tan6 0^0tan8 0^0

    Text Solution

    |

  19. sin1 2^(@)sin4 8^(@)sin5 4^(@)=

    Text Solution

    |

  20. If A, B, C, D be the angles of acyclic quadrilateral, show that : cosA...

    Text Solution

    |

  21. If A+B+C=pi, prove that : (cosA)/(sinb sinC) + (cosB)/(sinC sin) + (co...

    Text Solution

    |