Home
Class 12
MATHS
The least value of 2^(sinx)+2^(cosx), is...

The least value of `2^(sinx)+2^(cosx)`, is

A

` 2^(1-1sqrt(2))`

B

` 2^(1+1sqrt(2)`

C

`2^sqrt(2)`

D

2

Text Solution

Verified by Experts

The correct Answer is:
a

We know that, `AM ge GM`
` :. (2^(sinx)+2^(cosx))/2 ge sqrt(2^(sin x) 2 ^(cos x))`
` rArr 2^(sinx) + 2^(cos x) le 2 sqrt(2^(sin x +cosx))`
` rArr 2 ^(sin x) + 2^(cos x) ge 2 xx2^((sin x+cosx)/2)`
But ` sin x + cos x = sqrt(2) sin (x+pi/4) ge - sqrt(2)`
` :. 2^(sin x) + 2^(cosx) ge 2^(1-(sqrt(2))/2) rArr 2^(sin x) + 2 ^(cos x) ge 2^(1-1/(sqrt(2))),AA x in R`
Hence , the minimum value is ` 2^(1-1/(sqrt(2))`.
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|1 Videos
  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 3|1 Videos
  • PROBABILITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|4 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|30 Videos

Similar Questions

Explore conceptually related problems

find least value of 2^sinx +2^cosx

Minimum value of 2^(sinx)+2^(cosx) is

If sinx-cosx=1 , where 'x' is an acute angle ,the value of (sinx+cosx) is :

If sinx-cosx=1,where'x'is an acute angle,the value of (sinx+cosx) is:

If sinx + cosx = a, then the value of| sinx - cosx| is

The least vlaue of (1)/(5cosx+12sinx+15), is

Show that The maximum value of sinx. cosx in R is 1/2

The maximum values of sinx(1+cosx) will be at the

If tanx =3/2 , then the value of (3sinx+2cosx)/(3sinx-2cosx) is: यदि tanx =3/2 , (3sinx+2cosx)/(3sinx-2cosx) का मान है:

The value of 3(sinx - cosx)^4 + 6(sinx + cosx)^2 + 4 (sin^6 x + cos^6 x) is