Home
Class 12
MATHS
sum(k=1)^(2n+1)(-1)^(k-1)k^2=...

`sum_(k=1)^(2n+1)(-1)^(k-1)k^2=`

A

`(n-1)(2n-1)`

B

`(n+1)(2n+1)`

C

`(n+1)(2n-1)`

D

`(n-1)(2n+1)`

Text Solution

Verified by Experts

The correct Answer is:
b

` sum _(k=1)^(2n+1) (-1)^(k-1)k^(2)=[1^(2)-2^(2) +3^(2)-4^(2)+...-(2n)^(2)+(2n+1)^(2)]`
`= [ 1^(2) +3^(2)+5^(2) +...+ (2n+1)^(2) ] - [ 2^(2) +4^(2) +6^(2)+...+(2n)^(2)]`
`= [ 1^(2) +2^(2) +3^(2) +4^(2) +...+ (2n+1)^(2)]`
` -2[ 2^(2) +4^(2)+6^(2)+... + (2n)^(2)]`
` sum (2n+1)^(2) -2 xx 2^(2)[ 1^(2)+2^(2)+3^(2)+...+n^(2)]`
` = ((2n+1)(2n+1+1){2(2n+1)+})/6 [:' sum (n (n+1)(2n+1))/6]`
` = ((2n+1)(2n+2)(4n+3))/6 -8 [ (n(n+1)(2n +1))/6]`
` = ((n+1)(2n+1) )/6 [ 2(4n+3)-8n]`
` = ((n+1)(2n+1))/6 [ 8n + 6- 8n ] = (n+1) (2n+1)`
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|1 Videos
  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 3|1 Videos
  • PROBABILITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|4 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|30 Videos

Similar Questions

Explore conceptually related problems

Let S_(n)=sum_(k=1)^(4n)(-1)^((k(k+1))/2)k^(2) . Then S_(n) can take values

sum_(k =1)^(n) k(1 + 1/n)^(k -1) =

Let S_(n)=sum_(k=1)^(4n)(-1)^((k(k+1))/(2))*k^(2) , then S_(n) can take value

sum_(k=1)^(oo)k(1-(1)/(n))^(k-1)=a*n(n-1)bn(n+1)c*n^(2)d.(n+1)^(2)

If for n in N,sum_(k=0)^(2n)(-1)^(k)(2nC_(k))^(2)=A, then find the value of sum_(k=0)^(2n)(-1)^(k)(k-2n)(2nC_(k))^(2)

If a_(1),a_(2),a_(3)...a_(2n-1) are in H.P.then sum_(k=1)^(2n)(-1)^(k)(a_(k)+a_(k+1))/(a_(k)-a_(k+1)) is equal to

Evaluate the sum , sum_(k=1)^(n)(1)/(k(k+1)(k+2)……..(k+r)) .

Let U_(n)=sum_(k=1)^(n)(n)/(n^(2)+k^(2)),S_(n)=sum_(k=0)^(n-1)(n)/(n^(2)+k^(2)) then