Home
Class 12
MATHS
If S(n) = 1/(6*11)+1/(11*16)+1/(16*21)+....

If `S_(n) = 1/(6*11)+1/(11*16)+1/(16*21)+...` upto n terms , then `6S_(n)` equals

A

`(5n-4)/(5n+6)`

B

`n/(5n+6)`

C

`(2n-1)/(5n+6)`

D

`1/(5n+6)`

Text Solution

Verified by Experts

The correct Answer is:
b

Let `S_(n) = 1/5 (1/6 - 1/11+1/(11) -1/(16) +...+ 1/(5n+1) -1/(5n+6))`
` = 1/5 (1/6 - 1/(5n+6))= n/(6(5n+6)) rArr 6S_(n) = n/(5n+6)`
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|1 Videos
  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 3|1 Videos
  • PROBABILITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|4 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|30 Videos

Similar Questions

Explore conceptually related problems

If S_n = (1)/(6.11) + (1)/(11.16) + (1)/(16.21) + …. to n terms then 6S_n equals

2+4+7+11+16+.......... to n terms

If S_(n) = 1 + 3 + 7 + 13 + 21 + "….." upto n terms, then

(1-1/n) + (1 - 2/n) + (1 - 3/n)+ …… upto n terms = ?

2 + 4 + 7 + 11 + 16 + .... to n term =

S_(n)=(3)/(1^(2))+(3)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(2))+... upto n terms,then S_(n)=(6n)/(n+1) b.S_(n)=(6(n+2))/(n+1)cS_(oo)=6d.S_(oo)=1

2+4+7+11+16+............ to n terms

Consider S_(n)=(1)/(3^(2)+1)+(1)/(4^(2)+2)+(1)/(5^(2)+3)+(1)/(6^(2)+4)+, upto n terms then