Home
Class 12
MATHS
If 1/1^4+1/2^4+1/3^4+...+oo=pi^4/90, the...

If `1/1^4+1/2^4+1/3^4+...+oo=pi^4/90,` then `1/1^4+1/3^4+1/5^4+...+oo=`

A

` (pi^(4))/(96)`

B

` (pi^(4))/45`

C

` (89)/(90)pi`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
a

Since , ` 1/(1^(2))+1/2^(4)+1/3^(4)+...= (pi^(4))/90`
` rArr (pi^(4))/90 = (1/1^(4)+1/3^(3)+...)+(1/(2^(4))+1/(4^(4))+1/(6^(4))+...)`
` rArr (pi^(4))/90 = (1/(1^(4))+1/(3^(4))+...)+1/(2^(4))(1/(1^(4))+1/(2^(4))+1/3^(4)+...)`
` rArr (pi^(4))/90 = (1/1^(4)+1/(3^(4))+...)+1/16((pi^(4))/90) rArr (pi^(4))/(90) rArr 1/(1^(4))+1/(3^(4))+...`
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|1 Videos
  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 3|1 Videos
  • PROBABILITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|4 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|30 Videos

Similar Questions

Explore conceptually related problems

4+1/((5+1/(4+(1/(5+ . . . oo)))))=

Prove that (1-1/3+1/3^(2)-1/3^(3)+1/3^(4)-...oo)=3/4

If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+...oo=(pi^(2))/(6) then value of 1-(1)/(2^(2))+(1)/(3^(2))-(1)/(4^(2))+...oo=

(1/3. 1/3. 1/3 + 1/4. 1/4. 1/4 - 3. 1/3. 1/4. 1/5 + 1/5. 1/5. 1/5)/(1/3. 1/3 + 1/4. 1/4 + 1/5. 1/5 - (1/3. 1/4 + 1/4. 1/5 + 1/5. 1/3)) is equal to

Find 1+ 1/2+1/4+1/8+……….to oo

If | (1,4), (1., 3) |+| (1/2,4), (1/3,3) |+| (1/4,4), (1/9,3) |+.... oo = (i) 1 (ii) -1 (iii) 0 (iv) infty

2^(1/4). 4^(1/16). 8^(1/48) .........oo =

Find 1+1/2+1/4+1/8+ …. Upto oo .

(1) / (1.2) + (1.3) / (1.2.3.4) + (1.3.5) / (1.2.3.4.5.6) + .... oo

If 3+(1)/(4)(3+p)+(1)/(4^(2))(3+2p)+...+oo=8 then p