Home
Class 12
MATHS
If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)...

If `(e^(x))/(1-x) = B_(0) +B_(1)x+B_(2)x^(2)+...+B_(n)x^(n)+... `, then the value of `B_(n) - B_(n-1)` is

A

1

B

`1/n`

C

`1/(n!)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
c

We have , ` e^(x) = (1-x) (B_(0) +B_(1)x+B_(2)x^(2)+...+`
` B_(n-1)x^(n-1) +B_(n)x^(n) +...)`
By the expression of `e^(x)`, we get
` 1+x/(1!)+(x^(2))/(2!) +...+(x^(n))/(n!)+...`
` = (1- x)(B_(0)+B_(1)x+B_(2)x^(2)+...+B_(n-1)x^(n-1) +B_(n)x^(n)+...)`
On equating the coefficient of `x^(n)` both sides , we get
` B_(n) - B_(n-1) = 1/(n!)`
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|1 Videos
  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 3|1 Videos
  • PROBABILITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|4 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|30 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=a_(0)+a_(1)x+a_(2)x^(2)++a_(n)x^(n)+ and (f(x))/(1-x)=b_(0)+b_(1)x+b_(2)x^(2)++b_(n)x^(n)+ then b_(n)+b_(n-1)=a_(n) b.b_(n)-b_(n-1)=a_(n)cb_(n)/b_(n-1)=a_(n) d.none of these

If the expansion in powers of x of the function 1/[(1-ax)(1-bx)] is a a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+..., then a_(n) is (b^(n)-a^(n))/(b-a) b.(a^(n)-b^(n))/(b-a) c.(b^(n+1)-a^(n+1))/(b-a) d.(a^(n+1)-b^(n+1))/(b-a)

If A=int_0^1 x^50(2-x)^50dx, B=int_0^1 x^50(1-x)^50dx and A/B=2^n , then the value of n is …

If f(x)=(a_(1)x+b_(1))^(2)+(a_(2)x+b_(2))^(2)+...+(a_(n)x+b_(n))^(2), then prove that (a_(1)b_(1)+a_(2)b_(2)+...+a_(n)b_(n))^(2)<=(a_(1)^(2)+a_(2)^(2)+...+a_(n)^(2))(b_(1)^(2)+b_(2)^(2)+...+b_(n)^(2))

" If "_(" X ")" is "B(x,n,(1)/(3)),P(x>=1)>0.8" ,the least value of "n