Home
Class 12
MATHS
If a1,a2,a3, ,an are in A.P., where ai >...

If `a_1,a_2,a_3, ,a_n` are in A.P., where `a_i >0` for all `i` , show that `1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_1)+sqrt(a_3))++1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))dot`

A

` (n^(2)(n+1))/2`

B

` (n-1)/(sqrta_(1) +sqrta_(n))`

C

` (n(n-1))/2`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
b

Since , `a_(1),a_(2),….,a_(n)` are I Ap.
Then, `a_(1)-a_(1)=a_(3)= …=a_(n)-a_(n-1) =d`
where , d is common difference .
Now, `(1)/(sqrt(a_(2))+sqrt(a_(1)))+(1)/(sqrt(a_(3))+sqrt(a_(2)))+...+(1)/(sqrt(a_(n))+sqrt(a_(m-1)))`
`=(sqrt(a_(2))-sqrt(a_(1)))/(d)+(sqrt(a_(3))-sqrt(a_(2)))/(d)+...+(sqrt(a_(n))-sqrt(a_(n-1)))/(d)`
`=(1)/(d)(sqrt(a_(n))-sqrt(a_(1)))xx(sqrt(a_(n))+sqrt(a_(1)))/(sqrt(a_(n))+sqrt(a_(1)))`
`=(1)/(d)((a_(n)-a_(1))/(sqrt(a_(n))+sqrt(a_(1))))=(n-1)/(sqrt(a_(n))+sqrt(a_(1)))`
`" "[because a_(n)=a_(1)+(n-1)d]`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 7|1 Videos
  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 8|1 Videos
  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 5|1 Videos
  • PROBABILITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|4 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|30 Videos

Similar Questions

Explore conceptually related problems

If a_1,a_2,a_3,………a_n are in A.P, where a_igt0 for all i show that 1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_2)+sqrt(a_3))+……..+1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))

If a_1,a_2,a_3,.....,a_n are in AP where a_i ne kpi for all i , prove that cosec a_1* cosec a_2+ cosec a_2* cosec a_3+...+ cosec a_(n-1)* cosec a_n=(cota_1-cota_n)/(sin(a_2-a_1)) .

Knowledge Check

  • If a_1, a_2, a_3, ...., a_n are in A.P. where a_igt0 for all i, then the value of 1/(sqrta_1+sqrta_2)+1/(sqrta_2+sqrta_3)+....+1/(sqrt(a_(n-1))+sqrta_n) :

    A
    `(n-1)/(sqrta_1+sqrta_2)`
    B
    `(n+1)/(sqrta_1+sqrta_2)`
    C
    `n/(sqrta_1-sqrta_2)`
    D
    none
  • If a_1 , a_2 , a_3, …."" a_n are in A.P. where a_i gt 0 for all i , then the value of (1)/(sqrt(a_1) + sqrt(a_2)) + (1)/(sqrt(a_2) + sqrt(a_3)) + … + (1)/(sqrt(a_(n-1)) + sqrt(a_n)) :

    A
    a. `(n-1)/(sqrt(a_1) + sqrt(a_2))`
    B
    b. `(n+1)/(sqrt(a_1) + sqrt(a_2))`
    C
    c. `(n)/(sqrt(a_1) - sqrt(a_2))`
    D
    d. none of these
  • Similar Questions

    Explore conceptually related problems

    If a_1,a_2,a_3,…………..a_n are in A.P. whose common difference is d, show tht sum_2^ntan^-1 d/(1+a_(n-1)a_n)= tan^-1 ((a_n-a_1)/(1+a_na_n))

    If a_1,a_2,a_3,.....,a_n are in AP, prove that 1/(a_1a_2)+1/(a_2a_3)+1/(a_3a_4)+...+1/(a_(n-1)a_n)=(n-1)/(a_1a_n) .

    If a_1,a_2,a_3,...,a_n are in AP and a_i ne (2k-1)pi/2 for all i , find the sum seca_1*seca_2+seca_2*seca_3+seca_3*seca_4+...+seca_(n-1)*seca_n .

    "If "a_1,a_2,a_3,.....,a_n" are in AP, prove that "a_(1)+a_(n)=a_(r)+a_(n-r+1)""

    If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : (1-a_1)(1-a_2)(1-a_3)...(1-a_(n-1)) =n.

    If the nonzero numbers a_1,a_2,a_3,....,a_n are in AP, prove that 1/(a_1a_2a_3)+1/(a_2a_3a_4)+...+1/(a_(n-2)a_(n-1)a_n)=1/(2(a_2-a_1))(1/(a_1a_2)-1/(a_(n-1)a_n)) .