Home
Class 12
MATHS
If (10)^9 + 2(11)^1 (10)^8 + 3(11)^2 (1...

If `(10)^9 + 2(11)^1 (10)^8 + 3(11)^2 (10)^7+...........+10 (11)^9= k (10)^9` , then k is equal to :

A

`121/10`

B

`441/100`

C

100

D

110

Text Solution

Verified by Experts

The correct Answer is:
c

Given , ` k*10^(9)=10^(9)=10^(9) +2(11)^(1)(10)^(8)+3(11)^(2)(10)^(7)` ,
` +...+10(11)^(9)`
` k = 1+2 (11/10 )+3(11/10)^(2)+...+10(11/10)^(9)" "` …(i)
` (11/10) k = 1(11/10) +2(11/10)^(2)+...+ 9(11/9)^(9) +10 (11/10)^(10)" "` …(ii)
On subtracting Eq. (ii) from Eq (i), we get
` k(1-11/10) = 1+11/10 +(11/10)^(2) +...+ (11/10)^(9) -10 (11/10)^(10)`
` rArr k((10-11)/10)=(1[(11/10)^(10)-1])/((11/10-1) )-10 (11/10)^(10)`
` [ :' "In GP,sum of n terms" = (a(r^(n-1)))/(r-1),"when" r gt 1]`
` rArr -k = 10 [ 10(11/10)^(10) -10 -10 (11/10)^(10) ]`
` :. k = 100 `
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 8|1 Videos
  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 9|1 Videos
  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 6|1 Videos
  • PROBABILITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|4 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|30 Videos

Similar Questions

Explore conceptually related problems

if 10^(9)+2*11^(1)*10^(8)+3*11^(2)*10^(7)+............+10*11^(9)=k*10^(9) then k equals to:

If sum_(r=1)^(10)r(r-1)10C_(r)=k.2^(9), then k is equal to- -1

If 2^(10) + 2^(9) * 3^(1) + 2 ^(8) * 3^(2) + …. + 2 * 3^(9) + 3^(10) = S - 2^(11) , then S is equal to :

If sum_(i=1)^(10) ( (""^10C_(i-1))/(""^10C_i + ""^10C_(i-1) ))^3 = (k)/(11) , then k equals :

The value of (10^(11)-10^(9)-2xx11*10^(8)-3xx11^(2)xx10^(7)-....-(10)xx11^(9)) is equal to

IF (5x-7y+10)/1=(3x+2y+1)/8=(11x+4y-10)/9 then what is x+y equal to

If (1)/(9!)+(1)/(10!)=(x)/(11!) then x=

Sum of 10^(9)+11.10^(8)+2.11^(2)+10^(7)+3.17^(8.10)-4+......+11^(9)

2^(10)+2^(9) .3^1+.....2.3^9+3^(10)=A-2^(11) . Find A=

(9)/(10)+(3)/(11)+(7)/(15)=?