Home
Class 12
MATHS
If f(x)=[{:(mx+1,if x le (pi)/(2)),(sin...

If `f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):}` is continuous at `x = (pi)/(2)`, then

A

`m=1, n=0`

B

`m=(m pi)/(2)+1`

C

`n=m(pi)/(2)`

D

`m=n=(pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
C

Since, f(x) is continuous at `x=(pi)/(2)`
`lim_(x to (pi^(-))/(2)) (mx+1)=lim_(x to (pi^(+))/(2))(sinx+n)`
`rArr m(pi)/(2)+1="sin"(pi)/(2)+n`
`therefore (m pi)/(2)=n`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|60 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • CIRCLE AND CONICS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise All Questions|74 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {(ax+1,",",x le (pi)/(2)),(sin x+ b,",",x gt (pi)/(2)):} is continuous at x = (pi)/2 , then

If f(x)={{:(mx+1,xle(pi)/(2)),(sinx+n,xgt(pi)/(2)):} is continuous at x=(pi)/(2) . Then which one of the following is correct?

If f(x)={(ax+1",", x le (pi)/(2)),(sinx+b",", x gt (pi)/(2)):} is continuous, then

If f(x)={mx+1,x (pi)/(2) is continuous at x=(pi)/(2), then

If f(x)={(x+a sqrt(2) sinx"," ,0 lt x lt (pi)/(4)),(2x cotx+b",",(pi)/(4) le x le (pi)/(2)),(a cos 2x-b sinx",", (pi)/(2) lt x le pi):} is continuous at x=(pi)/(4) , then a - b is equal to

If f(x)={(((1-sin^(3)x))/(3cos^(2)x)",",x lt (pi)/(2)),(a",",x=(pi)/(2)),((b(1-sinx))/((pi-2x)^(2))",",x gt (pi)/(2)):} is continuous at x=(pi)/(2) , then the value of ((b)/(a))^(5//3) is

If f(x)={{:((1-sqrt2sinx)/(pi-4x)",",ifxne(pi)/(4)),(a",",if x=(pi)/(4)):} in continuous at (pi)/(4) , then a is equal to :

If f(x)={{:((1-sinx)/(pi-2x),,","xne(pi)/(2)),(lambda,,","x=(pi)/(2)):},"be continuous at "x=(pi)/(2), then value of lambda is

If f:R to R given by f(x)={(2cosx"," , "if", x le -(pi)/(2)),(a sin x+b",","if", -(pi)/(2) lt x lt (pi)/(2)),(1+cos^(2)x",","if",x ge(pi)/(2)):} is a continuous function on R, then (a, b) is equal to