Home
Class 12
MATHS
If f(x)={(sqrt(1+k x)-sqrt(1-k x))/x for...

If `f(x)={(sqrt(1+k x)-sqrt(1-k x))/x` for `1 le x< 0 and 2x^2+3x-2 for0 le x le 1` is continuous at `x-0` then `k`

A

`-4`

B

`-3`

C

`-2`

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
C

`LHL=lim_(x to 0^(-))(sqrt(1+kx)-sqrt(1-kx))/(x)xx(sqrt(kx)+sqrt(1-kx))/(sqrt(1+kx)+sqrt(1-kx))`
`=lim_(x to 0^(-))(2kx)/(x(sqrt(1+kx)+sqrt(1-kx)))=k`
`RHL=lim_(x to 0^(+))(2x^(2)+3x-2)= -2`
Since, it is given that f(x) is continuous.
`therefore LHL=RHL`
`rArr k = -2`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|60 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • CIRCLE AND CONICS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise All Questions|74 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos

Similar Questions

Explore conceptually related problems

If f(x)={(sqrt(1+kx)-sqrt(1-kx))/(x) for 1<=x<0 and 2x^(2)+3x-2f or 0<=x<=1 is continuous at x-0 then k

If f(x) = {((sqrt(1+kx)-sqrt(1-kx))/(x), "if" -1 le x lt 0),((2x+k)/(x-1), "if" 0 le x le1):} is continuous at x = 0, then the value of k is

If f(x)={((sqrt(1+px)-sqrt(1-px))/(x) ",", -1 le x lt 0),((2x+1)/(x-2)",", 0 le x le 1):} is continuous in [-1,1] then p is equal to

f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1),if 0 le x le 1):} at x = 0 .

f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1),if 0 le x le 1):} at x = 0 .

If f(x)= {{:((sqrt(1+kx)-sqrt(1-kx))/x", if "-1/2 lex lt 0),(2x^(2)+3x-2", if "0 le x le 1):} is continuous at x = 0 , then k = ….

If f(x)={((sqrt(1+kx)-sqrt(1-kx))/(x),",","for" -1 lex lt 0),(2x^(2)+3x-2,",","for" 0 le x le1):} is continuous at x=0 then find k

Let f(x)={{:((sqrt(1+ax)-sqrt(1-ax))/x ,","-1 le x lt 0),((2x+1)/(x-2), "," 0 le x le 1):} The value of a so f is continuous on [-1,1] is

If f(x) = {{:((sqrt(4+ax)-sqrt(4-ax))/x,-1 le x lt 0),((3x+2)/(x-8), 0 le x le 1):} continuous in [-1,1] , then the value of a is