Home
Class 12
MATHS
If f(x)={{:(,(x^(2))/(2),0 le x lt 1),(,...

If `f(x)={{:(,(x^(2))/(2),0 le x lt 1),(,2x^(2)-3x+(3)/(2),1 le x le 2):}` then,

A

discontinuous at x = 1

B

discontinuous at x = 2

C

continuous at x = 1

D

None of the above

Text Solution

Verified by Experts

The correct Answer is:
C

Here, we have to check the conitnuity of the function at x=1.
For this, we have a verify that LHL = RHL = f(1)
`f(1)=(1^(2))/(2)=(1)/(2)`
`LHL=lim_(x to 1^(-))f(x)=lim_(h to 0)f(1-h)`
`=lim_(h to 0) ((1-h)^(2))/(2)=(1)/(2)`
`RHL=lim_(x to 1^(+))f(x)=lim_(h to 0)f(1+h)`
`=lim_(h to 0)[2(1+h)^(2)-3(1+h)+(3)/(2)]=2-3+(3)/(2)=(1)/(2)`
Thus, `LHL=RHL =f(1)=(1)/(2)`
Hence, function is continuous at x = 1.
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|60 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • CIRCLE AND CONICS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise All Questions|74 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos

Similar Questions

Explore conceptually related problems

{{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if l lt x le 2):} at x = 1

{{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if l lt x le 2):} at x = 1

f(x) {:(=(x^(2))/2" , if " 0 le x lt 1 ),(= 2x^(2)-2x +3/2 ", if " 1 le x le 2 ):} is discontinuous at x = ……

If f(x) = {{:(|1-4x^(2)|",",0 le x lt 1),([x^(2)-2x]",",1 le x lt 2):} , where [] denotes the greatest integer function, then

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

If f(x)=[{:(sqrt(1-x), , , 0 le x le 1),((7x-6)^(-1) , , ,1 le x le 2):} then int_(0)^(2)f(x)dx equals

If f(x)={:{((x^(2)-3x+2)/(x-3)", for " 0 le x lt 4),((x^(2)-1)/(x-2)", for " 4 le x le 6):} , then on [0, 6]

Let f(x)=x^(3)-x^(2)+x+1 and g(x) be a function defined by g(x)={{:(,"Max"{f(t):0le t le x},0 le x le 1),(,3-x,1 le x le 2):} Then, g(x) is

If {:(f(x)=x^(2)", if "0 le x le 1),(" "= sqrt(x)", if " 1 le x le 2","):} then int_(0)^(2)f(x)dx=