Home
Class 12
MATHS
lim(n to oo) (1^(2)+2^(2)+3^(2)+…+n^(2))...

`lim_(n to oo) (1^(2)+2^(2)+3^(2)+…+n^(2))/(n^(3))` is equal to

A

`(1)/(2)`

B

`(2)/(3)`

C

`(1)/(3)`

D

`(1)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + \ldots + n^2}{n^3} \), we will follow these steps: ### Step 1: Identify the sum of squares formula The sum of the squares of the first \( n \) natural numbers is given by the formula: \[ 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \] ### Step 2: Substitute the formula into the limit We can substitute this formula into our limit: \[ \lim_{n \to \infty} \frac{\frac{n(n + 1)(2n + 1)}{6}}{n^3} \] ### Step 3: Simplify the expression Now, simplify the expression: \[ = \lim_{n \to \infty} \frac{n(n + 1)(2n + 1)}{6n^3} \] \[ = \lim_{n \to \infty} \frac{(n + 1)(2n + 1)}{6n^2} \] ### Step 4: Divide numerator and denominator by \( n^2 \) Next, we divide both the numerator and the denominator by \( n^2 \): \[ = \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right)}{6} \] ### Step 5: Evaluate the limit as \( n \) approaches infinity As \( n \) approaches infinity, \( \frac{1}{n} \) approaches 0. Thus, we have: \[ = \frac{(1 + 0)(2 + 0)}{6} = \frac{1 \cdot 2}{6} = \frac{2}{6} = \frac{1}{3} \] ### Final Answer Therefore, the limit is: \[ \lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + \ldots + n^2}{n^3} = \frac{1}{3} \] ---

To solve the limit \( \lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + \ldots + n^2}{n^3} \), we will follow these steps: ### Step 1: Identify the sum of squares formula The sum of the squares of the first \( n \) natural numbers is given by the formula: \[ 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • CIRCLE AND CONICS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise All Questions|74 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos

Similar Questions

Explore conceptually related problems

(lim_(n rarr oo)(1^(2)+2^(2)+3^(2)++n^(2))/(n^(3)) is equal to a.1b*c*1/3d.0

lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+.........+n^(2))/(n^(3)) is equal to -

lim_(n to oo) (1+(1+(1)/(2)+………+(1)/(n))/(n^(2)))^(n) is equal to :

lim_(n to oo) " " sum_(r=2n+1)^(3n) (n)/(r^(2)-n^(2)) is equal to

lim_ (n rarr oo) (1 ^ (2) + 2 ^ (2) ... + n ^ (2)) / (n ^ (3))

a_ (n) = (1+ (1) / (n ^ (2))) (1+ (2 ^ (2)) / (n ^ (2))) ^ (2) (1+ (3 ^ ( 2)) / (n ^ (2))) ^ (3) ......... (1+ (n ^ (2)) / (n ^ (2))) ^ (n) then lim_ (n rarr oo) a_ (n) ^ (- (1) / (n ^ (2))) is equal to

lim_(n rarr oo)(2^(3n))/(3^(2n))=

lim_(n rarr oo)sum_(r=2n+1)^(3n)(n)/(r^(2)-n^(2)) is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-CONTINUITY-EXERCISE 2 (MISCELLANEOUS PROBLEMS)
  1. If f(x) be continuous function and g(x) be discontinuous, then

    Text Solution

    |

  2. The function y =3sqrt(x)-|x-1| is continuous at

    Text Solution

    |

  3. lim(n to oo) (1^(2)+2^(2)+3^(2)+…+n^(2))/(n^(3)) is equal to

    Text Solution

    |

  4. If 0 lt a lt b, " then " lim(n to oo) (a^(n)+b^(n))/(a^(n)-b^(n))

    Text Solution

    |

  5. lim(x to 0)((1+x)^(8)-1)/((1+x)^(2)-1) is equal to

    Text Solution

    |

  6. If the function f(x) satisfies lim(x to 1) (f(x)-2)/(x^(2)-1)=pi, then...

    Text Solution

    |

  7. lim(x to0) (-1)^([x]) where [.] denotes the greatest function is equal...

    Text Solution

    |

  8. If lim(x to 1) (ax^(2)+bx+c)/((x-1)^(2))=2, then (a, b, c) is

    Text Solution

    |

  9. lim(m to oo)("cos"(x)/(m))^(m) is equal to

    Text Solution

    |

  10. The value of lim( x to 3) (x^(5)-3^(5))/(x^(8)-3^(8)) is equal to

    Text Solution

    |

  11. lim(x to 0) ((1-cos 2x)(3+cosx))/(x tan 4x) is equal to

    Text Solution

    |

  12. At x=3, f(x) ={(x^(5)-243",", "if " x ne 3),(x^(3)-27",", "if " x=3):}...

    Text Solution

    |

  13. The value of f(0), if f(x)=(x tan 2x)/(sin3x sin5x) is continuous at ...

    Text Solution

    |

  14. f(x)={((5^(cosx)-1)/((pi)/(2)-x)",", x ne (pi)/(2)), (log 5"," , x =(p...

    Text Solution

    |

  15. If f(x)={((sqrt(1+px)-sqrt(1-px))/(x) ",", -1 le x lt 0),((2x+1)/(x-2...

    Text Solution

    |

  16. The function f(x)=(x^3+x^2-16 x+20)/(x-2) is not defined for x=2. In o...

    Text Solution

    |

  17. In order that the function f(x)=(x+1)^(cotx) is continuous at x = 0, t...

    Text Solution

    |

  18. if f(x) is continuous and f(9/2)=2/9 then the value if lim(x->0)f((1-c...

    Text Solution

    |

  19. If f(x)={(ax+1",", x le (pi)/(2)),(sinx+b",", x gt (pi)/(2)):} is cont...

    Text Solution

    |

  20. If f(x)={((1+2x)^(1//x)",","for " x ne 0),(e^(2)",", "for " x =0):}, t...

    Text Solution

    |