Home
Class 12
MATHS
If lim(x to 1) (ax^(2)+bx+c)/((x-1)^(2)...

If `lim_(x to 1) (ax^(2)+bx+c)/((x-1)^(2))=2`, then (a, b, c) is

A

(2, -4, 2)

B

(2, 4, 2)

C

(2, 4, -2)

D

(2, -4, -2)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \(a\), \(b\), and \(c\) such that \[ \lim_{x \to 1} \frac{ax^2 + bx + c}{(x-1)^2} = 2. \] ### Step 1: Understanding the Limit Condition For the limit to exist as \(x\) approaches 1, the numerator \(ax^2 + bx + c\) must equal \(0\) at \(x = 1\) (since the denominator \((x-1)^2\) approaches \(0\)). Therefore, we have: \[ a(1)^2 + b(1) + c = 0 \implies a + b + c = 0. \] ### Step 2: Setting Up the Equality for the Limit Since the limit equals \(2\), we can write: \[ \lim_{x \to 1} \frac{ax^2 + bx + c}{(x-1)^2} = 2. \] This implies that \(ax^2 + bx + c\) must be equal to \(2(x-1)^2\) for values of \(x\) near \(1\). Expanding \(2(x-1)^2\): \[ 2(x-1)^2 = 2(x^2 - 2x + 1) = 2x^2 - 4x + 2. \] ### Step 3: Equating Coefficients Now we can equate the polynomial \(ax^2 + bx + c\) with \(2x^2 - 4x + 2\): \[ ax^2 + bx + c = 2x^2 - 4x + 2. \] From this, we can compare the coefficients of \(x^2\), \(x\), and the constant term: 1. Coefficient of \(x^2\): \(a = 2\) 2. Coefficient of \(x\): \(b = -4\) 3. Constant term: \(c = 2\) ### Step 4: Final Values Thus, we have: \[ (a, b, c) = (2, -4, 2). \] ### Conclusion The triplet \((a, b, c)\) is \((2, -4, 2)\). ---

To solve the problem, we need to find the values of \(a\), \(b\), and \(c\) such that \[ \lim_{x \to 1} \frac{ax^2 + bx + c}{(x-1)^2} = 2. \] ### Step 1: Understanding the Limit Condition For the limit to exist as \(x\) approaches 1, the numerator \(ax^2 + bx + c\) must equal \(0\) at \(x = 1\) (since the denominator \((x-1)^2\) approaches \(0\)). Therefore, we have: ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • CIRCLE AND CONICS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise All Questions|74 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos

Similar Questions

Explore conceptually related problems

If lim_(x rarr1)(ax^(2)+bx+c)/((x-1)^(2))=2, then lim_(x rarr1)((x-a)(x-b)(x-c))/(x+1) is

If lim_(x rarr(1)/(2))(ax^(2)+bx+c)/((2x-1)^(2))=(1)/(2) then lim_(x rarr2)((x-a)(x-b)(x-c))/(x-2) is

If underset(x to 1)lim (ax^(2)+bx+c)/((x-1)^(2))=2" then "underset(x to 1)lim ((x-a)(x-b)(x-c))/((x+1))=

If lim_(xrarr1)(ax^2+bx+c)/((x-1)^2)=2 , then lim_(xrarr1)((x-a)(x-b)(x-c))/(x+1) , is

lim_(x rarr oo)(x^(2)+bx+b)/(x^(2)+bx+c)=?

If lim_(x rarr0)(a+bx sin x+c cos x)/(x^(4))=2 then a=b=,c=

If lim_(x to 1) (1 + ax + bx^(2))^((c )/(x - 1)) = e^(3) , then the value of a + b + bc + 2009 is…….

If lim_(x rarr1)(1+ax+bx^(2))^((c)/(x-1))=e^(3), then find conditions on a,b and c.

Let alpha and beta be the distinct root of ax^(2) + bx + c=0 then lim_(x to 0) (1- cos (ax^(2)+ bx+c))/((x-alpha)^(2)) is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-CONTINUITY-EXERCISE 2 (MISCELLANEOUS PROBLEMS)
  1. If the function f(x) satisfies lim(x to 1) (f(x)-2)/(x^(2)-1)=pi, then...

    Text Solution

    |

  2. lim(x to0) (-1)^([x]) where [.] denotes the greatest function is equal...

    Text Solution

    |

  3. If lim(x to 1) (ax^(2)+bx+c)/((x-1)^(2))=2, then (a, b, c) is

    Text Solution

    |

  4. lim(m to oo)("cos"(x)/(m))^(m) is equal to

    Text Solution

    |

  5. The value of lim( x to 3) (x^(5)-3^(5))/(x^(8)-3^(8)) is equal to

    Text Solution

    |

  6. lim(x to 0) ((1-cos 2x)(3+cosx))/(x tan 4x) is equal to

    Text Solution

    |

  7. At x=3, f(x) ={(x^(5)-243",", "if " x ne 3),(x^(3)-27",", "if " x=3):}...

    Text Solution

    |

  8. The value of f(0), if f(x)=(x tan 2x)/(sin3x sin5x) is continuous at ...

    Text Solution

    |

  9. f(x)={((5^(cosx)-1)/((pi)/(2)-x)",", x ne (pi)/(2)), (log 5"," , x =(p...

    Text Solution

    |

  10. If f(x)={((sqrt(1+px)-sqrt(1-px))/(x) ",", -1 le x lt 0),((2x+1)/(x-2...

    Text Solution

    |

  11. The function f(x)=(x^3+x^2-16 x+20)/(x-2) is not defined for x=2. In o...

    Text Solution

    |

  12. In order that the function f(x)=(x+1)^(cotx) is continuous at x = 0, t...

    Text Solution

    |

  13. if f(x) is continuous and f(9/2)=2/9 then the value if lim(x->0)f((1-c...

    Text Solution

    |

  14. If f(x)={(ax+1",", x le (pi)/(2)),(sinx+b",", x gt (pi)/(2)):} is cont...

    Text Solution

    |

  15. If f(x)={((1+2x)^(1//x)",","for " x ne 0),(e^(2)",", "for " x =0):}, t...

    Text Solution

    |

  16. If f(y)={(((e^(2y)-1)*siny)/(y^(2)),", for "y ne 0),(4,", for "y=0):}...

    Text Solution

    |

  17. If f(x)={((tanx)/(sinx)",", x ne 0),(1",", x =0):} then f(x) is

    Text Solution

    |

  18. For the function f(x)={((sin^(2)ax)/(x^(2))",","where " x ne 0),(1",",...

    Text Solution

    |

  19. If f(x)={(x+a sqrt(2) sinx"," ,0 lt x lt (pi)/(4)),(2x cotx+b",",(pi)...

    Text Solution

    |

  20. Which of the following functions is continuous at x = 0 ?

    Text Solution

    |