Home
Class 12
MATHS
lim(x to 0) ((1-cos 2x)(3+cosx))/(x tan ...

`lim_(x to 0) ((1-cos 2x)(3+cosx))/(x tan 4x)` is equal to

A

4

B

3

C

2

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{(1 - \cos 2x)(3 + \cos x)}{x \tan 4x} \), we will follow these steps: ### Step 1: Use the identity for \( \cos 2x \) We know that: \[ \cos 2x = 1 - 2 \sin^2 x \] Thus, we can rewrite \( 1 - \cos 2x \) as: \[ 1 - \cos 2x = 2 \sin^2 x \] ### Step 2: Substitute in the limit Substituting this into the limit, we have: \[ \lim_{x \to 0} \frac{(2 \sin^2 x)(3 + \cos x)}{x \tan 4x} \] ### Step 3: Rewrite \( \tan 4x \) Recall that \( \tan 4x = \frac{\sin 4x}{\cos 4x} \). Therefore, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{(2 \sin^2 x)(3 + \cos x)}{x \cdot \frac{\sin 4x}{\cos 4x}} = \lim_{x \to 0} \frac{(2 \sin^2 x)(3 + \cos x) \cos 4x}{x \sin 4x} \] ### Step 4: Break the limit into parts We can break this limit into two parts: \[ \lim_{x \to 0} \frac{2 \sin^2 x}{x} \cdot \lim_{x \to 0} (3 + \cos x) \cdot \lim_{x \to 0} \frac{\cos 4x}{\sin 4x} \] ### Step 5: Evaluate each limit 1. **First Limit**: \[ \lim_{x \to 0} \frac{2 \sin^2 x}{x} = \lim_{x \to 0} 2 \cdot \frac{\sin^2 x}{x^2} \cdot x = 2 \cdot 1 \cdot 0 = 0 \] (Note: This limit is actually \( 0 \) since \( \sin x \approx x \) as \( x \to 0 \)) 2. **Second Limit**: \[ \lim_{x \to 0} (3 + \cos x) = 3 + 1 = 4 \] 3. **Third Limit**: \[ \lim_{x \to 0} \frac{\cos 4x}{\sin 4x} = \lim_{x \to 0} \frac{1}{4} \cdot \frac{\cos 4x}{x} = \frac{1}{4} \cdot 1 = \frac{1}{4} \] ### Step 6: Combine the results Now, combining these results: \[ \lim_{x \to 0} \frac{(1 - \cos 2x)(3 + \cos x)}{x \tan 4x} = 0 \cdot 4 \cdot \frac{1}{4} = 0 \] ### Final Result: Thus, the limit is: \[ \boxed{0} \]

To solve the limit \( \lim_{x \to 0} \frac{(1 - \cos 2x)(3 + \cos x)}{x \tan 4x} \), we will follow these steps: ### Step 1: Use the identity for \( \cos 2x \) We know that: \[ \cos 2x = 1 - 2 \sin^2 x \] Thus, we can rewrite \( 1 - \cos 2x \) as: ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • CIRCLE AND CONICS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise All Questions|74 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0) ((1-cos 2x)(3+cos x))/(x tan 4x) is equal to

lim_(xto0)((1-cosx)(3+cosx))/(x tan 4x) is equal to

lim_(x rarr0)((1-cos2x)(3+cos x))/(x tan4x) is equal to:

lim_(xrarr0) ((1-cos2x)(3+cosx))/(xtan4tanx) is equal to

(lim)_(x rarr0)((1-cos2x)(3+cos x)/(x tan4x)) is equal to (1)(1)/(2)(2)1(3)2(4)-(1)/(4)

lim_(x rarr0)((1-cos2x)(3+cos x))/(x tan4x) =

underset( x rarr 0 ) ( "lim")( (1- cos 2x) ( 3 + cos x ))/( x tan 4x) is equal to :

The value of lim_(x to 0) (log(sin 5x + cos 5x))/(tan 3x) is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-CONTINUITY-EXERCISE 2 (MISCELLANEOUS PROBLEMS)
  1. lim(m to oo)("cos"(x)/(m))^(m) is equal to

    Text Solution

    |

  2. The value of lim( x to 3) (x^(5)-3^(5))/(x^(8)-3^(8)) is equal to

    Text Solution

    |

  3. lim(x to 0) ((1-cos 2x)(3+cosx))/(x tan 4x) is equal to

    Text Solution

    |

  4. At x=3, f(x) ={(x^(5)-243",", "if " x ne 3),(x^(3)-27",", "if " x=3):}...

    Text Solution

    |

  5. The value of f(0), if f(x)=(x tan 2x)/(sin3x sin5x) is continuous at ...

    Text Solution

    |

  6. f(x)={((5^(cosx)-1)/((pi)/(2)-x)",", x ne (pi)/(2)), (log 5"," , x =(p...

    Text Solution

    |

  7. If f(x)={((sqrt(1+px)-sqrt(1-px))/(x) ",", -1 le x lt 0),((2x+1)/(x-2...

    Text Solution

    |

  8. The function f(x)=(x^3+x^2-16 x+20)/(x-2) is not defined for x=2. In o...

    Text Solution

    |

  9. In order that the function f(x)=(x+1)^(cotx) is continuous at x = 0, t...

    Text Solution

    |

  10. if f(x) is continuous and f(9/2)=2/9 then the value if lim(x->0)f((1-c...

    Text Solution

    |

  11. If f(x)={(ax+1",", x le (pi)/(2)),(sinx+b",", x gt (pi)/(2)):} is cont...

    Text Solution

    |

  12. If f(x)={((1+2x)^(1//x)",","for " x ne 0),(e^(2)",", "for " x =0):}, t...

    Text Solution

    |

  13. If f(y)={(((e^(2y)-1)*siny)/(y^(2)),", for "y ne 0),(4,", for "y=0):}...

    Text Solution

    |

  14. If f(x)={((tanx)/(sinx)",", x ne 0),(1",", x =0):} then f(x) is

    Text Solution

    |

  15. For the function f(x)={((sin^(2)ax)/(x^(2))",","where " x ne 0),(1",",...

    Text Solution

    |

  16. If f(x)={(x+a sqrt(2) sinx"," ,0 lt x lt (pi)/(4)),(2x cotx+b",",(pi)...

    Text Solution

    |

  17. Which of the following functions is continuous at x = 0 ?

    Text Solution

    |

  18. For what value of k, function f(x)={((k cosx)/(pi-2x)",","if "x ne (pi...

    Text Solution

    |

  19. For what value of k, f(x)={((2^(x+2)-16)/(4^(x)-16)",", x ne 2),(k",",...

    Text Solution

    |

  20. For what value of k, the function f(x)={((x)/(|x|+2x^(2))",", x ne 0)...

    Text Solution

    |