Home
Class 12
MATHS
If f(x)={(x+a sqrt(2) sinx"," ,0 lt x l...

If ` f(x)={(x+a sqrt(2) sinx"," ,0 lt x lt (pi)/(4)),(2x cotx+b",",(pi)/(4) le x le (pi)/(2)),(a cos 2x-b sinx",", (pi)/(2) lt x le pi):}` is continuous at `x=(pi)/(4)`, then a - b is equal to

A

`(pi)/(2)`

B

0

C

`(1)/(4)`

D

`(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( a - b \) for the function \( f(x) \) to be continuous at \( x = \frac{\pi}{4} \), we need to ensure that the left-hand limit (LHL) and the right-hand limit (RHL) at this point are equal. ### Step-by-Step Solution: 1. **Define the function segments**: \[ f(x) = \begin{cases} x + a \sqrt{2} \sin x & \text{for } 0 < x < \frac{\pi}{4} \\ 2x \cot x + b & \text{for } \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \\ a \cos 2x - b \sin x & \text{for } \frac{\pi}{2} < x \leq \pi \end{cases} \] 2. **Calculate the left-hand limit as \( x \) approaches \( \frac{\pi}{4} \)**: \[ \text{LHL} = \lim_{x \to \frac{\pi}{4}^-} f(x) = \frac{\pi}{4} + a \sqrt{2} \sin\left(\frac{\pi}{4}\right) \] Since \( \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \): \[ \text{LHL} = \frac{\pi}{4} + a \sqrt{2} \cdot \frac{\sqrt{2}}{2} = \frac{\pi}{4} + a \] 3. **Calculate the right-hand limit as \( x \) approaches \( \frac{\pi}{4} \)**: \[ \text{RHL} = \lim_{x \to \frac{\pi}{4}^+} f(x) = 2\left(\frac{\pi}{4}\right) \cot\left(\frac{\pi}{4}\right) + b \] Since \( \cot\left(\frac{\pi}{4}\right) = 1 \): \[ \text{RHL} = 2 \cdot \frac{\pi}{4} \cdot 1 + b = \frac{\pi}{2} + b \] 4. **Set LHL equal to RHL for continuity**: \[ \frac{\pi}{4} + a = \frac{\pi}{2} + b \] 5. **Rearranging the equation**: \[ a - b = \frac{\pi}{2} - \frac{\pi}{4} \] \[ a - b = \frac{\pi}{4} \] 6. **Final answer**: \[ a - b = \frac{\pi}{4} \]

To determine the value of \( a - b \) for the function \( f(x) \) to be continuous at \( x = \frac{\pi}{4} \), we need to ensure that the left-hand limit (LHL) and the right-hand limit (RHL) at this point are equal. ### Step-by-Step Solution: 1. **Define the function segments**: \[ f(x) = \begin{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • CIRCLE AND CONICS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise All Questions|74 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos

Similar Questions

Explore conceptually related problems

If the function f(x)={(x+a^(2)sqrt(2)sinx",", 0 le x lt (pi)/(4)),(x cot x+b",",(pi)/(4) le x lt (pi)/(2)),(b sin 2x-a cos 2x",", (pi)/(2) le x le pi):} is continuous in the interval [0,pi] then the values of (a, b) are

The values of a and b so that the function f(x) = {{:(x + a sqrt(2) sin x",",0 le x lt pi//4),(2 x cot x + b",",pi//4 le x le pi//2),(a cos 2 x - b sin x",",pi//2 lt x le pi):} is continuous for x in [0, pi] , are

Find the values of a and b so that the function f(x)={{:(x+asqrt2 sin x", "0 le x le pi//4),(2x cot x + b", "pi//4 le x le pi//2),(a cot 2x - b sin x", "pi//2 lt x le pi):} is continuous for 0 le x le pi .

f(x)= {:{(x+asqrt2 sin x ,, 0 le x lt pi/4),( 2x cot x +b , , pi/4 le x le pi/2), (a cos 2 x - b sin x , , pi/2 lt x le pi):} continuous function AA x in [ 0,pi] " then " 5(a/b)^(2) equals ....

If f(x) = {(ax+1,",",x le (pi)/(2)),(sin x+ b,",",x gt (pi)/(2)):} is continuous at x = (pi)/2 , then

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b.

If f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):} is continuous at x = (pi)/(2) , then

If f(x)={(ax+1",", x le (pi)/(2)),(sinx+b",", x gt (pi)/(2)):} is continuous, then

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-CONTINUITY-EXERCISE 2 (MISCELLANEOUS PROBLEMS)
  1. If f(x)={((tanx)/(sinx)",", x ne 0),(1",", x =0):} then f(x) is

    Text Solution

    |

  2. For the function f(x)={((sin^(2)ax)/(x^(2))",","where " x ne 0),(1",",...

    Text Solution

    |

  3. If f(x)={(x+a sqrt(2) sinx"," ,0 lt x lt (pi)/(4)),(2x cotx+b",",(pi)...

    Text Solution

    |

  4. Which of the following functions is continuous at x = 0 ?

    Text Solution

    |

  5. For what value of k, function f(x)={((k cosx)/(pi-2x)",","if "x ne (pi...

    Text Solution

    |

  6. For what value of k, f(x)={((2^(x+2)-16)/(4^(x)-16)",", x ne 2),(k",",...

    Text Solution

    |

  7. For what value of k, the function f(x)={((x)/(|x|+2x^(2))",", x ne 0)...

    Text Solution

    |

  8. The points of discontinuity of the function lim(n->oo) (((2 sin x )^(2...

    Text Solution

    |

  9. The function f(x)=(sin 2x)^(tan^(2)2x) is not defined at x=(pi)/(4). T...

    Text Solution

    |

  10. If the function f as defined below is continuous at x=0find the values...

    Text Solution

    |

  11. If a function y=f(x) is defined as y=(1)/(t^(2)-t-6)and t=(1)/(x-2), t...

    Text Solution

    |

  12. Let f(x)={((cos^(2)x-sin^(2)x-1)/(sqrt(x^(2)+4)-2)"," , x ne 0),(a",",...

    Text Solution

    |

  13. Let f(x)={(1-cos4x)/(x^2),\ \ \ if\ x<0a ,\ \ \ if\ x=0(sqrt(x))/(sqrt...

    Text Solution

    |

  14. lim(x->pi/2) ((1-tan(x/2))(1-sinx))/((1+tan(x/2))((pi-2x)^3))

    Text Solution

    |

  15. If f(x)=(sin 2x+A sinx+B cosx)/(x^(3)) is continuous at x = 0, then t...

    Text Solution

    |

  16. f(x)={(|x|+3",","if", x le -3),(-2x",", "if", -3 lt x lt 3),(6x+2",","...

    Text Solution

    |

  17. The function f given by f(x)={((e^(1//x)-1)/(e^(1//x)+1)",","if",x ne...

    Text Solution

    |

  18. Which of the following is not continuous for all x ?

    Text Solution

    |

  19. Let f(x)=x^(3)+x be function and g(x)={(f(|x|)",", x ge 0),(f(-|x|)...

    Text Solution

    |

  20. The value of f(0), so that the function f(x)=(1-cos(1-cosx))/(x^(4...

    Text Solution

    |