Home
Class 12
MATHS
For what value of k, function f(x)={((k ...

For what value of k, function `f(x)={((k cosx)/(pi-2x)",","if "x ne (pi)/(2)),(3",", "if " x =(pi)/(2)):}` is continuous at `x=(pi)/(2)`?

A

1

B

3

C

5

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( k \) for which the function \[ f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x} & \text{if } x \neq \frac{\pi}{2} \\ 3 & \text{if } x = \frac{\pi}{2} \end{cases} \] is continuous at \( x = \frac{\pi}{2} \), we need to ensure that the limit of \( f(x) \) as \( x \) approaches \( \frac{\pi}{2} \) is equal to the value of the function at that point, which is \( 3 \). ### Step 1: Find the limit as \( x \) approaches \( \frac{\pi}{2} \) We first compute the limit: \[ \lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}} \frac{k \cos x}{\pi - 2x} \] ### Step 2: Evaluate the limit Substituting \( x = \frac{\pi}{2} \) directly into the function gives: \[ \cos\left(\frac{\pi}{2}\right) = 0 \quad \text{and} \quad \pi - 2\left(\frac{\pi}{2}\right) = 0 \] This results in the indeterminate form \( \frac{0}{0} \). Therefore, we can apply L'Hôpital's Rule. ### Step 3: Apply L'Hôpital's Rule Using L'Hôpital's Rule, we differentiate the numerator and denominator: - The derivative of the numerator \( k \cos x \) is \( -k \sin x \). - The derivative of the denominator \( \pi - 2x \) is \( -2 \). Thus, we have: \[ \lim_{x \to \frac{\pi}{2}} \frac{k \cos x}{\pi - 2x} = \lim_{x \to \frac{\pi}{2}} \frac{-k \sin x}{-2} = \lim_{x \to \frac{\pi}{2}} \frac{k \sin x}{2} \] ### Step 4: Evaluate the limit again Now substituting \( x = \frac{\pi}{2} \): \[ \sin\left(\frac{\pi}{2}\right) = 1 \] So, we have: \[ \lim_{x \to \frac{\pi}{2}} \frac{k \sin x}{2} = \frac{k \cdot 1}{2} = \frac{k}{2} \] ### Step 5: Set the limit equal to the function value For the function to be continuous at \( x = \frac{\pi}{2} \), we need: \[ \frac{k}{2} = 3 \] ### Step 6: Solve for \( k \) Multiplying both sides by \( 2 \): \[ k = 6 \] ### Conclusion The value of \( k \) for which the function \( f(x) \) is continuous at \( x = \frac{\pi}{2} \) is \( k = 6 \). ---

To determine the value of \( k \) for which the function \[ f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x} & \text{if } x \neq \frac{\pi}{2} \\ 3 & \text{if } x = \frac{\pi}{2} \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • CIRCLE AND CONICS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise All Questions|74 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos

Similar Questions

Explore conceptually related problems

f(x) = {{:((k cosx )/((pi - 2x)"," if x ne (pi)/(2))),(3"," if x = (pi)/(2)):} at x = (pi)/(2) .

Consider the function: f(x)={{:((alphacosx)/(pi-2x),"if "xne(pi)/(2)),(3,"if "x=(pi)/(2)):} Which is continuous at x=(pi)/(2) , where alpha is a constant. What is the value of alpha ?

Find the value of k so that the function f defined by f(x)={(kcosx)/(pi-2x),3 , "if" x !=pi/2"if" x=pi/2 is continuous at x=pi/2

Consider the function f(x)={{:((alphacosx)/(pi-2x),If,xne(pi)/(2)),(3,If,x=(pi)/(2)):} Which is continuous at x=(pi)/(2) where alpha is a constant. What is the value of alpha ?

If f(x)={:{((cot x-cos x)/((pi-2x)^(3))", for " x != (pi)/(2)),(k ", for " x = pi/2):} is continuous at x= pi/2 , where , then k=

Examine the function, f(x) = {{:((cos x)/(pi//2 -x)",",x ne pi//2),(1",",x = pi//2):} for continuity at x = pi//2

f(x)={((5^(cosx)-1)/((pi)/(2)-x)",", x ne (pi)/(2)), (log 5"," , x =(pi)/(2)):} at x =(pi)/(2) is

If f(x)={{:((1-sinx)/(pi-2x),,","xne(pi)/(2)),(lambda,,","x=(pi)/(2)):},"be continuous at "x=(pi)/(2), then value of lambda is

f(x)={(sin(cos x)-cos x)/((pi-2x)^(3)),quad if x+-(pi)/(2) and k,quad if x=(pi)/(2) is continuous at x=(pi)/(2), then k

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-CONTINUITY-EXERCISE 2 (MISCELLANEOUS PROBLEMS)
  1. If f(x)={(x+a sqrt(2) sinx"," ,0 lt x lt (pi)/(4)),(2x cotx+b",",(pi)...

    Text Solution

    |

  2. Which of the following functions is continuous at x = 0 ?

    Text Solution

    |

  3. For what value of k, function f(x)={((k cosx)/(pi-2x)",","if "x ne (pi...

    Text Solution

    |

  4. For what value of k, f(x)={((2^(x+2)-16)/(4^(x)-16)",", x ne 2),(k",",...

    Text Solution

    |

  5. For what value of k, the function f(x)={((x)/(|x|+2x^(2))",", x ne 0)...

    Text Solution

    |

  6. The points of discontinuity of the function lim(n->oo) (((2 sin x )^(2...

    Text Solution

    |

  7. The function f(x)=(sin 2x)^(tan^(2)2x) is not defined at x=(pi)/(4). T...

    Text Solution

    |

  8. If the function f as defined below is continuous at x=0find the values...

    Text Solution

    |

  9. If a function y=f(x) is defined as y=(1)/(t^(2)-t-6)and t=(1)/(x-2), t...

    Text Solution

    |

  10. Let f(x)={((cos^(2)x-sin^(2)x-1)/(sqrt(x^(2)+4)-2)"," , x ne 0),(a",",...

    Text Solution

    |

  11. Let f(x)={(1-cos4x)/(x^2),\ \ \ if\ x<0a ,\ \ \ if\ x=0(sqrt(x))/(sqrt...

    Text Solution

    |

  12. lim(x->pi/2) ((1-tan(x/2))(1-sinx))/((1+tan(x/2))((pi-2x)^3))

    Text Solution

    |

  13. If f(x)=(sin 2x+A sinx+B cosx)/(x^(3)) is continuous at x = 0, then t...

    Text Solution

    |

  14. f(x)={(|x|+3",","if", x le -3),(-2x",", "if", -3 lt x lt 3),(6x+2",","...

    Text Solution

    |

  15. The function f given by f(x)={((e^(1//x)-1)/(e^(1//x)+1)",","if",x ne...

    Text Solution

    |

  16. Which of the following is not continuous for all x ?

    Text Solution

    |

  17. Let f(x)=x^(3)+x be function and g(x)={(f(|x|)",", x ge 0),(f(-|x|)...

    Text Solution

    |

  18. The value of f(0), so that the function f(x)=(1-cos(1-cosx))/(x^(4...

    Text Solution

    |

  19. The jump value of the function at the point of the discontinuity of th...

    Text Solution

    |

  20. f(x)=((4^x-1)^3)/(sin(x/p)log(1+(x^2)/3) is continuous at x=0 and f(0)...

    Text Solution

    |