Home
Class 12
MATHS
If f(x)=(sin 2x+A sinx+B cosx)/(x^(3)) i...

If `f(x)=(sin 2x+A sinx+B cosx)/(x^(3))` is continuous at x = 0, then the values of A, B and f(0) are

A

`A=-2, B=0 and f(0)=-1`

B

`A=0,B=-2 and f(0)=1`

C

`A=1, B=-1 and f(0)=0`

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( A \), \( B \), and \( f(0) \) for the function \[ f(x) = \frac{\sin(2x) + A \sin(x) + B \cos(x)}{x^3} \] such that \( f(x) \) is continuous at \( x = 0 \), we need to ensure that the limit of \( f(x) \) as \( x \) approaches 0 exists and is finite. ### Step 1: Evaluate the limit as \( x \) approaches 0 We start by calculating the limit: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin(2x) + A \sin(x) + B \cos(x)}{x^3} \] ### Step 2: Substitute \( x = 0 \) Substituting \( x = 0 \): \[ \sin(2 \cdot 0) + A \sin(0) + B \cos(0) = 0 + 0 + B = B \] Thus, the limit becomes: \[ \frac{B}{0} \] For the limit to exist and be finite, \( B \) must be 0. ### Step 3: Update the function with \( B = 0 \) Now, substituting \( B = 0 \) into the function gives us: \[ f(x) = \frac{\sin(2x) + A \sin(x)}{x^3} \] ### Step 4: Re-evaluate the limit with \( B = 0 \) Now, we need to find: \[ \lim_{x \to 0} \frac{\sin(2x) + A \sin(x)}{x^3} \] Substituting \( x = 0 \) again gives us: \[ \sin(2 \cdot 0) + A \sin(0) = 0 + 0 = 0 \] This results in the form \( \frac{0}{0} \), so we apply L'Hôpital's Rule. ### Step 5: Apply L'Hôpital's Rule Differentiating the numerator and denominator: \[ \text{Numerator: } \frac{d}{dx}(\sin(2x) + A \sin(x)) = 2 \cos(2x) + A \cos(x) \] \[ \text{Denominator: } \frac{d}{dx}(x^3) = 3x^2 \] Thus, we have: \[ \lim_{x \to 0} \frac{2 \cos(2x) + A \cos(x)}{3x^2} \] ### Step 6: Substitute \( x = 0 \) again Substituting \( x = 0 \): \[ \frac{2 \cos(0) + A \cos(0)}{3 \cdot 0^2} = \frac{2 + A}{0} \] For this limit to exist, \( 2 + A \) must equal 0, which gives us: \[ A = -2 \] ### Step 7: Find \( f(0) \) Now we can find \( f(0) \): \[ f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin(2x) - 2 \sin(x)}{x^3} \] This again gives us the form \( \frac{0}{0} \). We apply L'Hôpital's Rule again. ### Step 8: Differentiate again Differentiating again: \[ \text{Numerator: } \frac{d}{dx}(\sin(2x) - 2 \sin(x)) = 2 \cos(2x) - 2 \cos(x) \] \[ \text{Denominator: } \frac{d}{dx}(x^3) = 3x^2 \] Thus, we have: \[ \lim_{x \to 0} \frac{2 \cos(2x) - 2 \cos(x)}{3x^2} \] ### Step 9: Substitute \( x = 0 \) again Substituting \( x = 0 \): \[ \frac{2 \cos(0) - 2 \cos(0)}{3 \cdot 0^2} = \frac{0}{0} \] We apply L'Hôpital's Rule one more time. ### Step 10: Differentiate one last time Differentiating again gives: \[ \text{Numerator: } \frac{d}{dx}(2 \cos(2x) - 2 \cos(x)) = -4 \sin(2x) + 2 \sin(x) \] \[ \text{Denominator: } 6x \] Thus, we have: \[ \lim_{x \to 0} \frac{-4 \sin(2x) + 2 \sin(x)}{6x} \] ### Step 11: Substitute \( x = 0 \) again Substituting \( x = 0 \): \[ \frac{-4 \sin(0) + 2 \sin(0)}{6 \cdot 0} = \frac{0}{0} \] We apply L'Hôpital's Rule again. ### Step 12: Final differentiation Differentiating again gives: \[ \text{Numerator: } \frac{d}{dx}(-4 \sin(2x) + 2 \sin(x)) = -8 \cos(2x) + 2 \cos(x) \] Thus, we have: \[ \lim_{x \to 0} \frac{-8 \cos(2x) + 2 \cos(x)}{6} \] ### Step 13: Substitute \( x = 0 \) one last time Substituting \( x = 0 \): \[ \frac{-8 \cos(0) + 2 \cos(0)}{6} = \frac{-8 + 2}{6} = \frac{-6}{6} = -1 \] ### Final Results Thus, we have: - \( A = -2 \) - \( B = 0 \) - \( f(0) = -1 \)

To determine the values of \( A \), \( B \), and \( f(0) \) for the function \[ f(x) = \frac{\sin(2x) + A \sin(x) + B \cos(x)}{x^3} \] such that \( f(x) \) is continuous at \( x = 0 \), we need to ensure that the limit of \( f(x) \) as \( x \) approaches 0 exists and is finite. ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • CIRCLE AND CONICS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise All Questions|74 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(sin2x+A sin x+B cos x)/(x^(3)) is continuous at x=0, the value of A,B and f(0) are :

If f(x) = (sin 2x + A sin x + B cos x)/(x^(3)) is continuous at x = 0. Find the values of A and B. Also, find f(0)

if f(x)=(4+sin2x+A sin x+B cos x)/(x^(2)) for x!=0 is continuous at x=0 then A+B+f(0) is

let f(x)=(ae^(|sin x|)-b cos x-|x|)/(x^(2)) if f(x) is continuous at x=0 then find the values of a and b

If f(x)=(sin3x+Asin2x+Bsinx)/(x^(5)) for x!=0 is continuous at x=0 , then A+B+f(0) is

If f(x) = (Sin 3x + A sin 2x + B sinx)/x^5 for x != 0is continuous at x = 0. Find A,B and f(0).

if f(x)=(e^(x^(2))-cosx)/(x^(2)) , for xne0 is continuous at x=0 , then value of f(0) is

If f(x)=(2x+3sin x)/(3x+2sin x),x!=0 is continuous at x=0, then find f(0)

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-CONTINUITY-EXERCISE 2 (MISCELLANEOUS PROBLEMS)
  1. Let f(x)={(1-cos4x)/(x^2),\ \ \ if\ x<0a ,\ \ \ if\ x=0(sqrt(x))/(sqrt...

    Text Solution

    |

  2. lim(x->pi/2) ((1-tan(x/2))(1-sinx))/((1+tan(x/2))((pi-2x)^3))

    Text Solution

    |

  3. If f(x)=(sin 2x+A sinx+B cosx)/(x^(3)) is continuous at x = 0, then t...

    Text Solution

    |

  4. f(x)={(|x|+3",","if", x le -3),(-2x",", "if", -3 lt x lt 3),(6x+2",","...

    Text Solution

    |

  5. The function f given by f(x)={((e^(1//x)-1)/(e^(1//x)+1)",","if",x ne...

    Text Solution

    |

  6. Which of the following is not continuous for all x ?

    Text Solution

    |

  7. Let f(x)=x^(3)+x be function and g(x)={(f(|x|)",", x ge 0),(f(-|x|)...

    Text Solution

    |

  8. The value of f(0), so that the function f(x)=(1-cos(1-cosx))/(x^(4...

    Text Solution

    |

  9. The jump value of the function at the point of the discontinuity of th...

    Text Solution

    |

  10. f(x)=((4^x-1)^3)/(sin(x/p)log(1+(x^2)/3) is continuous at x=0 and f(0)...

    Text Solution

    |

  11. If the function f(x)={(x+a^(2)sqrt(2)sinx",", 0 le x lt (pi)/(4)),(...

    Text Solution

    |

  12. If f(x)={((sin 5x)/(x^(2)+2x)",", x ne 0),(k+(1)/(2)",", x =0):} is co...

    Text Solution

    |

  13. If f(x) = 2x and g(x) = (x^(2))/(2)+1 , then which of the following ...

    Text Solution

    |

  14. The function f(x) = (4-x^(2))/(4x-x^(3)) is

    Text Solution

    |

  15. If f(x)={(x",", "if x is rational "),(-x",","if x is irrational"):}, ...

    Text Solution

    |

  16. If f(x)={((cosx+3 sinx)^(5 "cosec"x)",",x in ((-pi)/(2),(pi)/(2))-{0}...

    Text Solution

    |

  17. Let f(x)={( sqrt(1+x^(2))",", x lt sqrt(3)),(sqrt(3)x-1",", sqrt(3) le...

    Text Solution

    |

  18. The value of f(0), so that the function f(x)=(sqrt(a^2-a x+x^2)-sqrt(...

    Text Solution

    |

  19. The function f(x)=x-|x-x^(2)| is

    Text Solution

    |

  20. For the function f(x)=(log(e)(1+x)+log(e)(1-x))/(x) to be continuous a...

    Text Solution

    |