Home
Class 12
MATHS
If f(x)={((log(1+2ax)-log(1-bx))/(x)",",...

If `f(x)={((log(1+2ax)-log(1-bx))/(x)",", x ne 0),(k",", x =0):}` is continuous at x = 0, then value of k is

A

b + a

B

b - 2a

C

2a - b

D

2a + b

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( k \) such that the function \[ f(x) = \begin{cases} \frac{\log(1 + 2ax) - \log(1 - bx)}{x} & \text{if } x \neq 0 \\ k & \text{if } x = 0 \end{cases} \] is continuous at \( x = 0 \), we need to ensure that \[ \lim_{x \to 0} f(x) = f(0) = k. \] ### Step 1: Find the limit as \( x \) approaches 0 We start by calculating the limit: \[ \lim_{x \to 0} \frac{\log(1 + 2ax) - \log(1 - bx)}{x}. \] Using the properties of logarithms, we can combine the logs: \[ \lim_{x \to 0} \frac{\log\left(\frac{1 + 2ax}{1 - bx}\right)}{x}. \] ### Step 2: Apply L'Hôpital's Rule Since substituting \( x = 0 \) gives us the indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the denominator: \[ \lim_{x \to 0} \frac{\frac{d}{dx} \left(\log(1 + 2ax) - \log(1 - bx)\right)}{\frac{d}{dx}(x)}. \] ### Step 3: Differentiate the numerator and denominator The derivative of the numerator is: \[ \frac{d}{dx} \left(\log(1 + 2ax)\right) = \frac{2a}{1 + 2ax}, \] and \[ \frac{d}{dx} \left(\log(1 - bx)\right) = -\frac{b}{1 - bx}. \] Thus, we have: \[ \frac{d}{dx} \left(\log(1 + 2ax) - \log(1 - bx)\right) = \frac{2a}{1 + 2ax} + \frac{b}{1 - bx}. \] The derivative of the denominator \( x \) is simply \( 1 \). ### Step 4: Substitute back into the limit Now we substitute back into the limit: \[ \lim_{x \to 0} \left(\frac{2a}{1 + 2ax} + \frac{b}{1 - bx}\right). \] As \( x \to 0 \): \[ \frac{2a}{1 + 2a \cdot 0} + \frac{b}{1 - b \cdot 0} = 2a + b. \] ### Step 5: Set the limit equal to \( k \) For continuity at \( x = 0 \), we set: \[ k = \lim_{x \to 0} f(x) = 2a + b. \] Thus, the value of \( k \) is: \[ \boxed{2a + b}. \]

To determine the value of \( k \) such that the function \[ f(x) = \begin{cases} \frac{\log(1 + 2ax) - \log(1 - bx)}{x} & \text{if } x \neq 0 \\ k & \text{if } x = 0 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|60 Videos
  • CIRCLE AND CONICS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise All Questions|74 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {{:((log(1+2ax)-log(1-bx))/(x)",",x ne 0),(" "k",",x = 0):} is continuous at x = 0, then k is equal to

If f(x)={((1-cos x)/(x)",",x ne 0),(k",",x=0):} is continuous at x = 0, then the value of k is

f(x)={(log(1+2ax)-log(1-bx))/(x),x!=0x=0

If f(x) {:(=(log (1-2x)-log(1-3x))/x", " x != 0 ),(=a", " x = 0 ):} is continuous at x = 0 , then : a =

If {:(f(x),=log_(1-3x)(1+3x),",",x != 0),(,=k, ",",x = 0):} is continuous at x = 0, then the value of k is

If f(x)={((sin 5x)/(x^(2)+2x)",", x ne 0),(k+(1)/(2)",", x =0):} is continuous at x = 0, then the value of k is

If f(x)={{:("x sin"(1)/(x)",",xne0),(k",",x=0):} is continuous at x=0, then the value of k is

If f(x) {:(=(log (1+3x )-log(1-2x))/x", if " x != 0 ),(=a", if " x =0 ):} is continuous at x = 0 , then a =